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1 THERMOCHEMICAL PROPERTIES 
1.1 QUANTUM CHEMISTRY AND THE 0 K LIMIT 
The energies obtained from quantum-chemical calculations almost universally correspond to the 0 K limit 

and represent the electronic energy of the system under investigation. Of course, the systems we wish to 

investigate in the laboratory setting are always at some finite temperature. If, for instance, one is interested 

in the relative stability of different materials or the thermodynamics of a given chemical reaction, the 

energetic properties at 0 K are only going to tell part of the story. The question, therefore, is how do we 

convert the computed 0 K properties to one at a given temperature? More specifically, how can we compute 

common thermodynamic properties, such as enthalpies, entropies, and Gibbs free energies, which are so 

crucial to understanding various chemical phenomena? 

1.2 ZERO-POINT VIBRATIONAL ENERGY 
Before we introduce temperature-based corrections to the computed 0 K electronic energy, we need to first 

acknowledge that there is another component to the total energy of a system in the 0 K limit – the zero-

point vibrational energy (ZPVE). While it may seem paradoxical at first, the vibrational modes of a given 

system also contribute to the total energy in the 0 K limit. This purely quantum-mechanical phenomenon is 

due to the fact that the lowest vibrational energy state that the molecule retains even at 0 K is non-zero. 

The ZPVE can be readily computed from a frequency analysis carried out on the system of interest, wherein 

the vibrational modes are computed. If these vibrational frequencies, denoted 𝜈̅𝑖, have dimensions of 

1/[length] (as is the case for the commonly used unit of wavenumbers, cm-1), then these frequencies can be 

readily converted into vibrational energies, 𝜀𝑖, via 

𝜀𝑖 = ℎ𝑐𝜈̅𝑖 (1) 

where ℎ and 𝑐 are Planck’s constant and the speed of light in a vacuum, respectively. Under the harmonic 

oscillator approximation (see Equation A11 in the Appendix), the energy due to vibrational motion at 0 K, 

𝐸ZPVE, can then quite simply be calculated as 

𝐸ZPVE =∑
𝜀𝑖
2

𝑖

(2) 

This equation comes from the fact that the energy of the lowest vibrational level under the harmonic 

oscillator approximation is 𝜀𝑖/2, and we are simply summing each one of these lowest-energy vibrational 

levels up throughout the system. While Equation (2) assumes that each vibrational mode is harmonic in 

character, this is typically a good approximation when it comes to calculating 𝐸ZPVE. Adding this ZPVE 

correction to the 0 K electronic energy provides the true 0 K energy of the system, which is sometimes 

written as the 0 K internal energy 

𝑈0 = 𝐸 + 𝐸ZPVE (3) 

where 𝐸 is the 0 K electronic energy. With this, we can now consider thermodynamic corrections. 
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1.3 FROM PARTITION FUNCTIONS TO THERMOCHEMISTRY 
The connection between the 0 K state of the system and the state at some finite temperature can be made 

through the use of the molecular partition functions, 𝑄. This can be readily appreciated by recalling some 

fundamental thermodynamic definitions from statistical mechanics, namely that1 

𝑈 = 𝑘B𝑇
2 (
𝜕 ln(𝑄)

𝜕𝑇
)
𝑁,𝑉

(4) 

and  

𝐴 = −𝑘B𝑇 ln(𝑄) (5) 

where 𝑈 is the internal energy, 𝑘B is Boltzmann’s constant, 𝑇 is the absolute temperature, and 𝐴 is the 

Helmholtz free energy. With Equations (4) and (5), we can compute the remaining thermochemical 

properties via simple thermodynamic relationships. Importantly, we can also state that the entropy, 𝑆, can 

be calculated via 

𝑆 =
𝑈 − 𝐴

𝑇
= 𝑘B ln(𝑄) + 𝑘B𝑇 (

𝜕 ln(𝑄)

𝜕𝑇
)
𝑁,𝑉

(6) 

1.4 FACTORIZING THE PARTITION FUNCTION 
Before we calculate 𝑄, we first need to ask ourselves: what is 𝑄 composed of? First, let’s make a distinction. 

Typically, we are interested in the thermodynamic properties of an ensemble of 𝑁 molecules. We will first 

tackle the partition function for one molecule, denoted 𝑄1. Since the total energy of a molecular system is 

the sum of translation (𝑞trans), vibrational (𝑞vib), rotational (𝑞rot), and electronic (𝑞el) components, we can 

say that the molecular partition function is the product of all its individual components, such that 

𝑄1 = 𝑞trans𝑞vib𝑞rot𝑞el (7) 

The reason we multiply, rather than add, the different components of 𝑄1 together is because the 

thermodynamic properties of interest all involve taking the natural logarithms of the molecular partition 

function, such that the product of partition functions appropriately gives component-based sums of the 

thermodynamic properties of interest. 

The partition function for 𝑁 indistinguishable molecules can be written similarly: 

𝑄 =
𝑄1
𝑁

𝑁!
=
(𝑞trans)

𝑁

𝑁!
𝑞vib
𝑁 𝑞rot

𝑁 𝑞el
𝑁 (8) 

If we were to plug 𝑄 into a natural logarithm, as is often the case when computing thermodynamic 

properties, we would arrive at 

ln(𝑄) = ln (
(𝑞trans𝑞vib𝑞rot𝑞el)

𝑁

𝑁!
) = 𝑁(ln(𝑞trans) + ln(𝑞vib) + ln(𝑞rot) + ln(𝑞el)) − ln(𝑁!) (9) 

which can be rewritten using Stirling’s approximation to 

 
1 Here, we are writing 𝑈 such that it is the energy that needs to be added to 𝑈0 in order to get the total internal energy 

of the system at a given temperature. In other words, we have written 𝑈 using 𝑈0 as the zero-energy reference point. 

This is a common convention in computational chemistry, where the expressions derived in this section are thought 

of as thermodynamic “corrections” that can be added the 0 K electronic energy and ZPVE. 
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ln(𝑄) ≈ 𝑁(ln(𝑞trans) + ln(𝑞vib) + ln(𝑞rot) + ln(𝑞el)) − 𝑁 ln(𝑁) + 𝑁 (10) 

for large 𝑁, which is typically the case when attempting to model a real chemical system. 

We have now clarified the individual components of 𝑄, but this only changes the question: how do we 

calculate the translational, vibrational, rotational, and electronic components of 𝑄? In principle, one must 

know all possible quantum states for the system, which is rarely practical. Instead, several assumptions and 

approximations can be made such that 𝑄 can be readily obtained. 

1.5 TRANSLATIONAL PARTITION FUNCTION 
If we assume the system is well-modeled under the quantum-mechanical particle-in-a-box approximation, 

the translational partition function is given by 

𝑞trans = 𝑉 (
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)

3
2

(11) 

where 𝑚 is the mass of the molecule and 𝑉 is the volume from the particle-in-a-box model. The above 

equation is only true for a 3D particle-in-a-box. If a molecule is constrained such that it can move in only 

two or one dimensions, the exponential term would be 1 or 1/2. The derivation for Equation (11) is given 

in the Appendix. 

The volume term 𝑉 is related to the choice of reference state for the system. For an ideal gas, the 𝑉 term 

can be rewritten such that 

𝑞trans =
𝑘B𝑇

𝑃∘
(
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)

3
2

(12) 

where 𝑃∘ is the reference state pressure, typically taken as 1 bar as convention (but should always be 

specified). Sometimes, the definition of 𝑞trans in Equation (11) will be written such that it does not have 

the 𝑉 term (i.e. such that it has units of inverse volume and is written out as 𝑞trans/𝑉). In this case, 𝑞trans/𝑉 

typically has a value of approximately 1024 cm-3.  

With this, we can compute the translational components of the thermodynamic properties of interest. 

Plugging Equation (12) into Equation (4) yields 

𝑈trans =
3

2
𝑘B𝑇 (13) 

and Equation (12) into Equation (6) yields 

𝑆trans
∘ = 𝑘B (ln (

𝑘B𝑇

𝑃∘
(
2𝜋𝑚𝑘B𝑇

ℎ2
)
3/2

) +
5

2
) (14) 

In the calculation of 𝑆trans
∘ , we have tacitly assumed that the −𝑁 ln(𝑁) + 𝑁 component in Equation (10) is 

lumped in with the translational component, as is common convention. We have specified the ∘ superscript 

on the entropy to remind ourselves that it is dependent on the choice of reference state. 

Fortunately, the translational components are quite simple to calculate, as they do not require any quantum-

chemical calculations at all. All you need is the mass of the system and the specified temperature. 
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1.6 VIBRATIONAL PARTITION FUNCTION 
If we assume the system is well-modeled by the harmonic oscillator quantum-mechanical model, the 

vibrational partition function can be written as 

𝑞vib =∏
1

1 − 𝑒
−
𝜀𝑖
𝑘B𝑇𝑖

(15) 

where the product is carried out over all vibrational energies 𝜀𝑖. For a linear molecule, there will be 3𝑁 − 5 

vibrational modes, whereas there will be 3𝑁 − 6 vibrational modes for a nonlinear molecule. The derivation 

of Equation (15) can be found in the Appendix. For reference, the value of 𝑞vib is unitless and is 

approximately a value of 1 in terms of order of magnitude. 

By plugging in Equation (15) into Equation (4), we can state 

𝑈vib =∑
𝜀𝑖

𝑒
𝜀𝑖
𝑘B𝑇 − 1𝑖

(16) 

and by plugging in Equation (15) into Equation (6), we get 

𝑆vib = 𝑘B∑(
𝜀𝑖

𝑘B𝑇 (𝑒
𝜀𝑖
𝑘B𝑇 − 1)

− ln (1 − 𝑒
−
𝜀𝑖
𝑘𝐵𝑇))

𝑖

(17) 

It is clear from the above expressions that the vibrational energies (and thereby frequencies) are needed. 

These can be obtained a frequency analysis of the optimized structure. Note that monatomic species will 

not have any vibrational frequencies, in which case all the vibrational contributions to the thermodynamic 

functions are non-existent. 

1.7 ROTATIONAL PARTITION FUNCTION 
If we assume the system is well-modeled by the rigid-rotor quantum-mechanical model, the rotational 

partition function for a linear molecule can be written as  

𝑞rot linear =
𝑘B𝑇

𝜎Θ
(18) 

where 𝜎 is the symmetry number (i.e. the number of ways a molecule can be oriented in indistinguishable 

ways) and Θ is the rotational temperature (here in units of J) defined by 

Θ ≡
ℎ2

8𝜋2𝐼
(19) 

where 𝐼 is the (degenerate) moment of inertia. The symmetry number of a monatomic species or one without 

any symmetry is given by 1. Note that sometimes the rotational temperature is given in units of K (as the 

name suggests), in which case a factor of 𝑘B can be used to interconvert between the two. Sometimes it is 

given in units of inverse length (e.g. wavenumbers), in which case it is simply called the rotational constant 

and can be interconverted using a factor of ℎ𝑐. 

Equation (18) is only true for linear molecules with a single, well-defined moment of inertia. For nonlinear 

molecules, the analogue of Equation (18) is given by  
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𝑞rot nonlinear =
1

𝜎
(
𝜋(𝑘B𝑇)

3

ΘAΘBΘC
)

1
2

(20) 

where there is a given rotational constant corresponding to each principle axis of rotation in three 

dimensions. The rotational temperatures in Equation (20) are defined the same way as in Equation (19) 

except that the moment of degenerate moment of inertia 𝐼 is now the principle moment of inertia (i.e. ΘA 

uses 𝐼A, ΘB uses 𝐼B, and ΘC uses 𝐼C). 

The rotational constants are computed based on the definition of the moment of inertia, which is 

𝐼 =∑𝑚𝑖𝑟𝑖
2

𝑖

(21) 

where 𝑚𝑖 is the mass of atom 𝑖 and 𝑟𝑖 is the perpendicular distance of atom 𝑖 to the axis of rotation. For a 

simple diatomic molecule, the moment of inertia is quite easy to compute and is given by 𝜇𝑑2, where 𝜇 is 

the reduced mass given by 

𝜇 ≡
𝑚1𝑚2

𝑚1 +𝑚2

(22) 

and 𝑑 is the bond length. Since one is rarely just dealing with diatomic molecules and the principle axes of 

rotation can be difficult to determine, most computational chemistry codes will provide the rotational 

constants of the structure upon performing a frequency analysis. The symmetry number can be determined 

based on the point group of the molecule, which can be automatically determined using various symmetry-

detection algorithms. For reference, the value of 𝑞rot is unitless and is approximately 102 − 104 for linear 

molecules and 103 − 106 for nonlinear molecules. 

With this, we can get the rotational contribution to the internal energy by plugging in Equations (18) and 

(20) into (4) to yield 

𝑈 = { 

𝑘B𝑇, linear
3

2
𝑘B𝑇, nonlinear

(23) 

Similarly, by plugging in Equations (18) and (20) into (6), the vibrational component of the entropy can be 

calculated as 

𝑆rot =

{
 
 

 
 𝑘B (ln (

𝑘B𝑇

𝜎Θ
) + 1) , linear

𝑘B (ln(
1

𝜎
(
𝜋(𝑘B𝑇)

3

ΘAΘBΘC
)

1
2

) +
3

2
) , nonlinear

(24) 

As with the vibrational degrees of freedom, a monatomic species has no contribution to the rotational 

thermodynamic properties. 

1.8 ELECTRONIC PARTITION FUNCTION 
The electronic partition function is related to the number of available electronic states. The electronic 

partition function is given by 
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𝑞el =∑𝑔𝑖𝑒
−
𝐸𝑖
𝑘𝐵𝑇

𝑖

(25) 

where the sum is carried out over all electronic states 𝑖, 𝑔𝑖 is the degeneracy of state 𝑖, and 𝐸𝑖 is the electronic 

energy of state 𝑖 with respect to the ground state. In other words, 𝐸𝑖 is defined as 0 for the ground state. If 

the excited states are high in energy relative to the ground state and cannot be readily accessed then for a 

molecule, the electronic partition function simply becomes 𝑞el = 𝑔0 where 𝑔0 is the degeneracy of the 

ground state. If the system of interest has no unpaired electrons, then the ground state energy occurs only 

once and 𝑔0 = 1. If the system has unpaired electrons, then the degeneracy is given by 𝑔0 = 𝑛unpaired e− +

1 such that 

𝑞el = 𝑛unpaired e− + 1 (26) 

where 𝑛unpaired e− is the number of unpaired electrons in the system (also written as 2𝑆 where 𝑆 here is the 

spin quantum number and each electron is spin one-half). The value 𝑛unpaired e− + 1 is referred to as the 

spin multiplicity of the system. While many molecules as so-called “closed-shell” (i.e. have no unpaired 

electrons), there are many cases where unpaired electrons must be considered. For instance, a radical (e.g. 

Cl ⋅) by definition has one unpaired electron and therefore has a spin multiplicity of 2. Similarly, many 

transition metal complexes can exist in one of many different possible spin states, which must be 

considered. Another important molecule with unpaired electrons is gas-phase O2, which (unlike most gases) 

has a ground state with two unpaired electrons (i.e. it has spin multiplicity of 3). 

By plugging in Equation (26) into (4), we find that 

𝑈el = 0 (27) 

and Equation (26) into (6), we find that  

𝑆el = 𝑘B ln(𝑛unpaired e− + 1) (28) 

for the situation where excited states are not readily accessible. 

1.9 THERMOCHEMICAL PROPERTIES OF AN IDEAL GAS 
For an ideal gas, the enthalpy is not a function of pressure. Therefore, we can state that 

𝐻(𝑇) = 𝐸 + 𝐸ZPVE +∫𝐶𝑃(𝑇)

𝑇

0

d𝑇 (29) 

where 𝐸 is the 0 K electronic energy, 𝐶𝑃 is the constant-pressure heat capacity, and 𝑇 is the absolute 

temperature. For an ideal gas, we know that 

𝐶𝑃(𝑇) = 𝑘B + 𝐶𝑉(𝑇) (30) 

We also know that the definition of the constant-volume heat capacity is 

𝐶𝑉(𝑇) ≡ (
𝜕𝑈(𝑇)

𝜕𝑇
)
𝑉

(31) 

Therefore, we can rewrite the expression for 𝐻(𝑇) as  

𝐻(𝑇) = 𝐸 + 𝐸ZPVE + 𝑈(𝑇) + 𝑘B𝑇 (32) 
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for an ideal gas. Here, we can split 𝑈(𝑇) into its various components such that 

𝑈(𝑇) = 𝑈trans(𝑇) + 𝑈vib(𝑇) + 𝑈rot(𝑇) + 𝑈el(𝑇) (33) 

The ideal gas entropy is calculated with respect to a reference pressure, as will be discussed in greater detail 

below. The ideal gas entropy, 𝑆(𝑇, 𝑃), is calculated as 

𝑆(𝑇, 𝑃) = 𝑆(𝑇, 𝑃∘) − 𝑘B ln (
𝑃

𝑃∘
) = 𝑆trans

∘ + 𝑆vib + 𝑆rot + 𝑆el − 𝑘B ln (
𝑃

𝑃∘
) (34) 

The Gibbs free energy is most often computed simply by its definition of 

𝐺(𝑇, 𝑃) ≡ 𝐻(𝑇) − 𝑇𝑆(𝑇, 𝑃) (35) 

With this, if the reaction Gibbs free energy Δ𝐺 were of interest, one would compute 𝐺 for the product(s), 

𝐺 for the reactant(s), and subtract the two quantities. In this way, the thermodynamics of chemical reactions 

can be readily determined from quantum-chemical calculations. 

As can be seen from the above equations, for an ideal gas, if we calculate 𝐸 (obtained from the output of a 

quantum-chemical calculation), 𝐸ZPVE, 𝑈(𝑇) and 𝑆(𝑇, 𝑃), then we can also get 𝐻(𝑇) and 𝐺(𝑇, 𝑃). Since 

vibrational frequencies are needed for calculating 𝐸ZPVE, 𝑈vib, and 𝑆vib, many computational chemistry 

codes will compute various thermodynamic properties automatically after a vibrational frequency analysis 

has been performed. 

2 KINETIC PROPERTIES 
2.1 EYRING EQUATION FROM TRANSITION STATE THEORY 
Transition state theory (TST) treats the activated intermediate as a real (but transient) species, which means 

that we can use thermodynamics to estimate its properties. Let us consider the unimolecular reaction given 

by 

A
𝐾‡

↔A‡ → P (36) 

where the activated complex is in quasi-equilibrium with the reactant and has an equilibrium constant given 

by 𝐾‡. The equilibrium constant for this example reaction is given by 

𝐾‡ =
[A]‡

[A]
(37) 

The rate of reaction, 𝑟, can be taken as simply 

𝑟 = 𝜈‡[A‡] (38) 

where 𝜈‡ is the frequency of passage over the energy barrier and [A‡] is the concentration of the activated 

complex. Using the definition of the equilibrium constant, we can rewrite the rate expression in terms of 

measurable concentrations as  

𝑟 = 𝜈‡𝐾‡[A] (39) 

We can define the frequency 𝜈‡ as the provided thermal energy such that 

𝜈‡ =
𝑘𝐵𝑇

ℎ
(40) 
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Therefore, 

𝑟 =
𝑘B𝑇

ℎ
𝐾‡[A] (41) 

Recall that we can relate the equilibrium constant to the Gibbs free energy change such that 

Δ𝐺‡ = −𝑅𝑇 ln(𝐾‡) (42) 

We can then use the fact that 

Δ𝐺‡ = Δ𝐻‡ − 𝑇Δ𝑆‡ (43) 

to say 

𝐾‡ = exp (
Δ𝑆‡

𝑅
)exp (−

𝛥𝐻‡

𝑅𝑇
) (44) 

We can then write the rate expression as 

𝑟 =
𝑘𝐵𝑇

ℎ
exp (

Δ𝑆‡

𝑅
)exp (−

𝛥𝐻‡

𝑅𝑇
) [A] (45) 

The above expression is the Eyring equation from TST. We can immediately see that it takes the form of 

𝑟 = 𝑘[A] (46) 

if we define 

𝑘 =
𝑘𝐵𝑇

ℎ
exp (

Δ𝑆‡

𝑅
)exp (−

𝛥𝐻‡

𝑅𝑇
) (47) 

However, there is a big problem. The units of 𝑘 are always in s-1 in this equation, regardless of the 

molecularity of the reaction. As a result, Eyring’s TST equation only has the correct units for unimolecular 

reactions and does not work as-written for higher molecularities, such as the bimolecular reaction A + B →

P. 

Strictly speaking, Eyring’s TST equation is only applicable for first order reactions of the type A → P. The 

more accurate equation for the rate constant, accounting for different molecularities, should be 

𝑘 = 𝐶∘(1−𝑛)
𝑘𝐵𝑇

ℎ
exp (

𝛥𝑆‡

𝑅
)exp (−

𝛥𝐻‡

𝑅𝑇
) (48) 

where 𝐶∘ is a reference concentration and 𝑛 is the molecularity. The reference concentration is typically 

given by 𝑃∘/𝑘B𝑇 where the reference pressure 𝑃∘ is typically 1 bar when dealing with ideal gases. The 

more rigorous derivation of this reference concentration factor can be found in the following subsection 

and uses the partition functions directly in the calculation of the rate constant. Here, the need for 𝐶∘ comes 

from the reference state used in calculating Δ𝑆‡. Therefore, the choice of 𝑃∘ must be identical both in the 

use of 𝐶∘ (if applying the ideal gas law) and in calculating Δ𝑆‡. As-written in Equation (48), 𝑘 is on a 

molecule basis and can be converted to a mol basis using 𝑃∘/𝑅𝑇 instead of 𝑃∘/𝑘B𝑇. 
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2.2 GENERALIZED RATE EXPRESSION 
A more rigorous way of approaching the expression for the rate constant is by using the partition functions 

directly. For any equilibrium process, we can write the equilibrium constant as  

𝐾 = exp (−
𝛥𝑈0
𝑅𝑇

)∏(
𝑄𝑖
𝑉
)
𝜈𝑖

𝑖

(49) 

where Δ𝑈0 is the 0 K change in internal energy (i.e. 𝐸 + 𝐸ZPVE). For the bimolecular reaction A + B → P, we can say 

𝐾‡ =

𝑄‡

𝑉
𝑄A
𝑉
𝑄B
𝑉

exp (−
𝛥𝑈0

‡

𝑅𝑇
) (50) 

Therefore, the rate expression can be given by 

𝑟 =
𝑘B𝑇

ℎ

𝑄‡

𝑉
𝑄A
𝑉
𝑄B
𝑉

exp(−
𝛥𝑈0

‡

𝑅𝑇
) [A][B] (51) 

This is reminiscent of the Arrhenius equation. We can say that the pre-exponential factor, 𝐴, is 

𝐴 =
𝑘𝐵𝑇

ℎ

𝑄‡

𝑉
𝑄A
𝑉
𝑄B
𝑉

(52) 

such that the rate constant 𝑘 is given by 

𝑘 = 𝐴 exp(−
𝛥𝑈0

‡

𝑅𝑇
) (53) 

and then we get the functional form of  

𝑟 = 𝑘[A][B] (54) 

like we would expect. Unlike with the derivation of the Eyring equation, here the units are appropriate because they 

rely on the number of reactant molecular partition functions (and 𝑞trans/𝑉 has units of inverse volume). Therefore, 

the generalized rate constant expression can be correctly written in its general form as 

𝑘 =
𝑘B𝑇

ℎ

𝑄‡

𝑉

∏ (
𝑄𝑖
𝑉 )

reactants
𝑖

exp (−
𝛥𝑈0

‡

𝑅𝑇
) (55) 

As-written in Equation (55), 𝑘 is on a molecule basis and can be converted to a mol basis using Avogadro’s 

constant, 𝑁A, via 

𝑘 = 𝑁A
𝑛−1 𝑘B𝑇

ℎ

𝑄‡

𝑉

∏ (
𝑄
𝑖

𝑉
)reactants

𝑖

exp(−
𝛥𝑈0

‡

𝑅𝑇
) (56) 

While both Equation (48) and (56) are fundamentally identical, Equation (56) is the rigorous way to show 

that 𝑘 has the appropriate units regardless of the dimensionality. Nonetheless, in practice, Equation (48) is 

more commonly used in the area of computational chemistry given that most quantum chemistry packages 

automatically compute 𝐻 and 𝑆 when a frequency analysis is performed. 
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3 APPENDIX 
3.1 DERIVATION OF THE TRANSLATIONAL PARTITION FUNCTION 
Recall from quantum mechanics that the one-dimensional particle-in-a-box solution to the Schrodinger 

wave equation is given by 

𝐸𝑛,1D =
ℏ2𝑛2𝜋2

2𝑚𝐿2
(A1) 

where 𝐸𝑛 is the energy of quantum number 𝑛, 𝑚 is the mass of the system, and 𝐿 is the length of the box. 

Note that ℏ is the reduced Planck constant, given by ℎ/2𝜋. We can write the partition function for a one-

dimensional, single particle-in-a box as the following 

𝑞trans 1D = ∑𝑒
−
𝐸𝑛
𝑘𝐵𝑇

∞

𝑛=1

= ∑𝑒−𝛾𝑛
2

∞

𝑛=1

≈ ∫ 𝑒−𝛾𝑛
2

∞

0

d𝑛 =
𝐿

𝜆𝐷
(A2) 

where  

𝛾 ≡
1

𝑘𝐵𝑇

ℏ2𝜋2

2𝑚𝐿2
(A3) 

and 

𝜆𝐷 = (
2𝜋ℏ2

𝑚𝑘B𝑇
)

1
2

(A4) 

This only applies for sufficiently small 𝛾 for the summation to be computed as an integral. The 𝜆𝐷 term is 

known as the thermal de Broglie wavelength. To scale this up to a 3D particle-in-a-box, the energy term 

must be modified to become 

𝐸𝑛 =
ℏ2𝜋2

2𝑚𝐿2
(𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2) (A5) 

such that the partition function for a single particle in the 3D box becomes 

𝑞trans = 𝐿
3 (
𝑚𝑘𝐵𝑇

2𝜋ℏ2
)

3
2
=
𝐿3

𝜆𝐷
3

(A6) 

Substituting 𝑉 for 𝐿3 (and using ℎ instead of ℏ for simplicity) then yields 

𝑞trans = 𝑉 (
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)

3
2
=
𝑉

𝜆𝐷
3

(A7) 

3.2 DERIVATION OF THE VIBRATIONAL PARTITION FUNCTION 
Under the harmonic oscillator quantum-mechanical model, the vibrational energy for a single vibrational 

mode is given by  

𝐸𝑛,1 mode = ℎ𝜈 (𝑛 +
1

2
) (A9) 
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where 𝜈 is the vibrational frequency and 𝑛 is the vibrational quantum number. The partition function for 

this single vibrational mode is then 

𝑞vib,1 mode = ∑𝑒
−
ℎ𝜈(𝑛+

1
2)

𝑘𝐵𝑇

∞

𝑛=0

=
𝑒
−
ℎ𝜈
2𝑘𝐵𝑇

1 − 𝑒
−
ℎ𝜈
𝑘𝐵𝑇

(A10) 

To scale this up to multiple vibrational modes, we must rewrite Equation (A9) as 

𝐸𝑛 =∑ℎ𝜈𝑖 (𝑛𝑖 +
1

2
)

𝑖=1

(A11) 

where the sum is carried out for all relevant vibrational modes. In analogy to Equation (A10), the vibrational 

partition function is then 

𝑞vib =∏
𝑒
−
ℎ𝜈𝑖
2𝑘𝐵𝑇

1 − 𝑒
−
ℎ𝜈𝑖
𝑘𝐵𝑇𝑖

(A12) 

Oftentimes, it is standard convention to rewrite Equation (A11) such that the 𝑛𝑖 = 0 states yield an energy 

of zero since this is the ZPVE and is typically separated out from the vibrational partition function, as shown 

in Equation (2). In this case, we can rewrite Equation (A12) as 

𝑞vib =∏
1

1 − 𝑒
−
ℎ𝜈𝑖
𝑘B𝑇𝑖

(A13) 

3.3 DERIVATION OF THE ROTATIONAL PARTITION FUNCTION 
Under the rigid-rotor quantum-mechanical model, the energy of a single rotational degree of freedom for a 

specified quantum number ℓ is given by  

𝐸ℓ =
ℏ2ℓ(ℓ + 1)

2𝐼
(A14) 

where 𝐼 is the moment of inertia and ℏ is the reduced Planck constant given by ℎ/2𝜋. With this definition, 

the rotational partition function is 

𝑞rot =∑(2ℓ + 1)𝑒
−
ℏ2ℓ(ℓ+1)
2𝐼𝑘B𝑇

∞

ℓ=0

=∑(2ℓ + 1)𝑒
−
Θℓ(ℓ+1)
𝑘B𝑇

∞

ℓ=0

(A15) 

where Θ is the rotational constant defined as 

Θ ≡
ℏ2

2𝐼
(A16) 

For Θ ≪ 𝑘𝐵𝑇, which is often the case except at temperatures close to absolute zero, we can approximate 

the summation as an integral to get 

𝑞rot ≈ ∫(2ℓ + 1)𝑒
−
Θℓ(ℓ+1)
𝑘𝐵𝑇

∞

0

dℓ =
𝑘B𝑇

Θ
(A17) 
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Strictly speaking, this formula also needs to take into account the symmetry of the molecule and therefore 

𝑞rot =
𝑘B𝑇

𝜎Θ
(A18) 

where 𝜎 is the symmetry number (i.e. the number of ways a molecule can be oriented in indistinguishable 

ways) and is related to the point group of the molecule. The above expression is only true for linear 

molecules with a single, well-defined moment of inertia. For nonlinear molecules,  

𝑞rot =
1

𝜎
(
𝜋(𝑘B𝑇)

3

ΘAΘBΘC
)

1
2

(A19) 

where ΘA, ΘB, and ΘC are the three rotational constants (one for each spatial dimension, resulting from the 

different moments of inertia that exist in each dimension). 


