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1 A BRIEF REVIEW OF CLASSICAL THERMODYNAMICS

1.1 PRELUDE

This section on classical thermodynamics is not meant to be a thorough review. It does not cover much of
the underlying theory. It simply provides a refresher of content typically covered in a standard
undergraduate thermodynamics course and is used just to provide context for the statistical mechanical
content discussed in later sections.

1.2 TERMINOLOGY

In order to accurately and precisely discuss various aspects of thermodynamics, it is essential to have a
well-defined vernacular. As such, a list of some foundational concepts and their definitions are shown
below. Other terms will be defined as they are introduced.

e Universe — all measured space

e System — space of interest

e Surroundings — the space outside the system

e Boundary — what separates the system from the surroundings

o Open System — a system that can have both mass and energy flowing across the boundary

e Isolated System — a system that can have neither mass nor energy flowing across the boundary

e Closed System — a system that can have energy but not mass flowing across the boundary

e Extensive Property — a property that depends on the size of the system

e Intensive Property — a property that does not depend on the size of the system

e State — the condition in which one finds a system at any given time (defined by its intensive
properties)

e Process —what brings the system from one state to another

e State Function — a quantity that depends only on the current state of a system

e Path Function — a quantity that depends on the path taken

e Adiabatic Process — a process that has no heat transfer (Q = 0)

¢ Rigid System — a system that does not allow for mechanical work (W = 0)

o Permeable System — a process that does not allow for species transport

e |Isothermal Process — a process that has a constant temperature (AT = 0)

e Isobaric Process — a process that has a constant pressure (AP = 0)

e Isochoric Process — a process that has a constant volume (AV = 0)

o Isenthalpic Process — a process that has a constant enthalpy (AH = 0)

e Isentropic Process — a process that has a constant entropy (AS = 0)

o Diathermal Process — a process that allows heat transfer (Q # 0)

e Moveable System — a system that allows for mechanical work (W # 0)

o Impermeable System — a system that does not allow species transport

e Mechanical Equilibrium — no pressure difference between system and surroundings

e Thermal Equilibrium — no temperature difference between system and surroundings

e Chemical Equilibrium — no tendency for a species to change phases or chemical react

e Thermodynamic Equilibrium —a system that is in mechanical, thermal, and chemical equilibrium

e Phase Equilibrium — a system with more than one phase present that is in thermal and mechanical
equilibrium between the phases such that the phase has no tendency to change

e Chemical Reaction Equilibrium — a system undergoing chemical reactions with no more
tendency to react



1.3 ZEROTH LAW OF THERMODYNAMICS

The zeroth law of thermodynamics states: if two systems are separately in thermal equilibrium with a third,
then they must also be in thermal equilibrium with each other. This is a seemingly trivial statement but is
one that must be set for the rest of thermodynamics to rigorously hold true. It essentially defines an
operational definition of temperature (i.e. the thing that must be the same between the three systems for
them to be in thermal equilibrium).

1.4 FIRST LAW OF THERMODYNAMICS

1.4.1 DEFINITION OF INTERNAL ENERGY

The first law of thermodynamics states that the total quantity of energy in the universe is constant (in other
words, energy cannot be created or destroyed, although it can change forms). That being said, it is not
convenient to consider the entire universe when doing a thermodynamic calculation. We can break this
statement down into the region we are interested in (i.e. the system) and the rest of the universe (i.e. the
surroundings). This allows us to restate the first law of thermodynamics as: the energy change of the system
must equal the energy transferred across its boundaries from the surroundings. Energy can be transferred
as heat, Q, or by work, W, for a closed system. Written mathematically then,

AU=Q+W,

where AU is a state function we call the change in internal energy (of the system). In differential form, this
iS

dU = 8Q + §W,

where the § operator is used in place of the d operator to denote an inexact differential (i.e. the differential
change of a path function).

1.4.2 HEAT AND WORK

Heat, Q, is defined as the amount of energy transferred to a system via a temperature gradient. All other
forms of energy transfer are considered work, denoted W. Work can be supplied by many means, but the
most common in chemical systems is via external pressure over a volume change such that

W=—deV.

This is often referred to as PV (or mechanical) work. In this context, a positive value of W is defined as the
energy transferred from the surroundings to the system. The same sign-convention is chosen for heat.

1.4.3 DEFINITION OF ENTHALPY
For mechanical work, we know that SW = —P dV, so

dU =6Q —Padv.
At constant pressure, P dV = d(PV), so we can then state
dU = 6Qp — d(PV),
where the subscript on heat denotes constant pressure. Solving for §Qp,

8Qp = d(U + PV).



This U + PV term will appear frequently in thermodynamics and refers to a quantity called enthalpy, H,
defined as

H=U+PV.

This means that at constant P, dH = §Qp. In addition, at constant ¥, no work is done, so dU = §Qy.
Enthalpy and internal energy therefore each describe how heat changes a system in different conditions.
They differ in value because at constant P, some heat will go into performing work instead.

1.4.4 DEFINITION OF HEAT CAPACITY
The heat capacity, C, is defined as the ratio of heat added to the corresponding temperature rise,
6
C= —Q
dT
More often, the heat capacity at a constant set of conditions is defined for a given substance. For instance,
since §Q = AU at constant volume, the constant volume heat capacity, Cy, is

o = (aU)
=\ot/y
Similarly, since §Q = dH at constant pressure, the constant pressure heat capacity, Cp, is
C. = (6H>
P=\or/y

It should be noted that C» > C}, since — for a given §Q — some of that heat must go into work, causing a
smaller temperature change.

1.4.5 IDEAL GAS ASSUMPTIONS
For an ideal monatomic gas, it can be shown that

U—3 RT
—271 .
and since H = U + PV,
H—5 RT
This then also means that
C _3 R
V_Zn
and
C —5 R
p—zn .

As we can see from the above expressions, the following useful relationship exists for ideal gases:

CP_CV =nR



1.5 CALCULATING FIRST-LAW QUANTITIES IN CLOSED SYSTEMS

1.5.1 STARTING POINT
When calculating first-law quantities in closed systems for reversible processes, it is best to always start
with the following three equations, which are always true:

W:—deV

AU=Q+W
AH = AU + A(PV)

If ideal gas conditions can be assumed then, heat capacities are constant and

Cp — Cy =nR
AH = AH(T)
AU = AU(T)
1.5.2 REVERSIBLE, ISOBARIC PROCESS
Since pressure is constant:
W = —PAV

We then have the following relationships for enthalpy:

Qp = AH
AHszpdT

AH = AU + PAV

1.5.3 REVERSIBLE, ISOCHORIC PROCESS
Since volume is constant:

W=20
We then have the following relationships for the internal energy:

Qy =AU

AH = AU + VAP

1.5.4 REVERSIBLE, [SOTHERMAL PROCESS
If one is dealing with an ideal gas, AU and AH are only functions of temperature, so

AU=AH =0

Due to the fact that AU = Q + W,



For an ideal gas, integrate the ideal gas law with respect to V to get

W = —nRT1 (V2>— RT1 <P2>
= n n V1 =N n P1

1.5.5 REVERSIBLE, ADIABATIC PROCESS
By definition the heat exchange is zero, so:

Q=0
Due to the fact that AU = Q + W,
W =AU

The following relationships can also be derived for a system with constant heat capacity:

R
T, (VI)E
T, \V;

) =)

P1V1CP/CV — PZVZCP/CV

Cp

This means that

_A(PV)  mRAT
TG/C -1 GGy —1

W =AU
1.5.6 IRREVERSIBLE, ADIABATIC EXPANSION INTO A VACUUM
For this case,
Q=W=AU=AH =0

1.6 THE CARNOT CYCLE
A thermodynamic cycle always returns to the same state it was in initially, meaning all state functions are
zero for the net cycle. For a Carnot cycle, there are four stages, as outlined in the figure below.
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Since all state functions are zero for the net cycle, we know that

AUcycle = AHcycle =0
Due to the First Law of Thermodynamics,

—Whet = Qnet

The net work and the neat heat can be computed by summing up the individual work and heat from each of
the four processes. For a Carnot cycle, there is a negative net work.

The following relationships apply to the Carnot cycle:

P, P
Pi Py
and
Qu_ _Tu
Qc Tc
The efficiency of the Carnot cycle is defined as
_ network  [Wpe| 1 Tc
= Wasted heat Qy Ty

The efficiency of the Carnot cycle run in reverse (i.e. a Carnot refrigerator) is characterized by the
coefficient of performance, given by

Qc Tc

COP = =
|Wnet| TH - TC




1.7 SECOND LAW OF THERMODYNAMICS

Recall that in the equation dU = §Q + W, we were able to replace 6W by a function of only state
variables. It would be ideal if the same could be done for §Q so that dU could be calculated from only state
functions as well. This can be achieved with the second law of thermodynamics. | will start with the
definition and then follow with the mathematical explanation. The second law of thermodynamics states
that the entropy, S, of the universe increases for all real, irreversible processes (and does not change for
reversible processes). In other words,

ASiniv = 0,
where

ASuniv = ASsystem + ASsurroundings-

However, to understand this law, we must first define entropy, which we can do by finding out the
integrating factor to turn 6Q into an exact differential. We begin with

80 =dU + P dV.

Assuming an ideal gas, we can then say

50 = onrar + "ET 4y
Q=gm y ¢

If we were to integrate this expression, we would have an nRT In (?) term on the right-hand side. The

factor of T makes this entirely dependent on the path. However, if we divide by T on both sides, we get

69 _3 .dT nR
T 2™ Ty A

Integrating from an initial to final state,

A 5Q 3 T v,

f f
= =SnRIn(L) + nR1n ().

f T > nRin T, +nRIn v,

l
We then see that 1/T is an integrating factor such that §Q /T is an exact differential, as it is independent of
path now. We can define this exact differential as entropy,

_ 60
ds =—

1.8 CALCULATING SECOND-LAW QUANTITIES IN CLOSED SYSTEMS

1.8.1 REVERSIBLE, ADIABATIC PROCESSES
Since the process is reversible and there is no heat transfer?,

AS =0, ASgyr =0, ASyny =0

1.8.2 REVERSIBLE, ISOTHERMAL PROCESSES
Since temperature is constant,

L1t will be tacitly assumed any quantity without a subscript refers to that of the system.

10



_ Qrev

AS
T

If the ideal gas assumption can be made, then AU = 0 such that Q,.c, = Wey = — [ P dV. Plug in the ideal
gas law to get

P,
AS = —nRIn (—)
Py

Since all reversible processes have no change in the entropy of the universe (i.e. AS ;v = 0), we can say
that ASgyr = —AS.

1.8.3 REVERSIBLE, ISOBARIC PROCESSES
Since §Qp = dH = Cp dT for isobaric processes,

Cp
AS = | —dT
7

Since all reversible processes have no change in the entropy of the universe (i.e. ASy,;y = 0), we can say
that ASgyr = —AS.

1.8.4 REVERSIBLE, ISOCHORIC PROCESSES
Since §Qy = dU = Cy, dT for isochoric processes,

Cy
AS = | —dT
fT

Since all reversible processes have no change in the entropy of the universe (i.e. ASy,;y = 0), we can say
that ASgyr = —AS.

1.8.5 REVERSIBLE PHASE CHANGE AT CONSTANT T AND P
In this case, Q,ey is the latent heat of the phase transition. As such,

Qp _ AHtransition

AS =
T T

Since all reversible processes have no change in the entropy of the universe (i.e. AS ;v = 0), we can say
that ASg,r = —AS.

1.8.6 IRREVERSIBLE PROCESSES FOR IDEAL GASES
A general expression can be written to describe the entropy change of an ideal gas. Two equivalent
expressions are:

As—jc"dT+ R1 (VZ)

=7 nR In v
and

Cp P,

AS—I?dT—HRln(P—l)

In order to find the entropy change of the universe, one must think about the conditions of the problem
statement. If the real process is adiabatic, then Qg = 0 and then AS,- = 0 such that AS,,;, = AS. If

11



the real process is isothermal, note that Q = W from the First Law of Thermodynamics (i.e. AU = 0) amd
that due to conservation of energy Qsu.r = —Q. Once Qgyrr 1S known, simply use ASgy . = QS;". The
entropy change in the universe is then AS iy = AS + ASgyrr-

If the ideal gas approximation cannot be made, try splitting up the irreversible process into hypothetical,
reversible pathways that may be easier to calculate.

1.8.7 ENTROPY CHANGE OF MIXING
If we assume that we are mixing different inert, ideal gases then the entropy of mixing is

Vr
ASmiX =R Z n; In (V)
L

For an ideal gas at constant T and P then

p;
ASphix = —R Z n;In (P_l> = —R Z n; In(x;)
tot

where P; is the partial pressure of species i and x; is the mole fraction of species i.

1.8.8 EXPANSION INTO A VACUUM
For expansion into a vacuum (otherwise known as a Joule expansion),

£ P,
ASSys = ASuniV =nRIn (71) = —nR In (P_l)
1.9 DERIVED THERMODYNAMIC QUANTITIES

1.9.1 EXACT DIFFERENTIALS
The change in any intensive thermodynamic property of interest, z, can be written in terms of partial
derivatives of the two independent intensive properties, x and y as shown below:

When z(x, y) is a smooth function, the mixed derivatives are equal, such that the following (referred to as
the Euler reciprocity) holds:
0%z 0%z

dx dy - dy 0x’

1.9.2 MATHEMATICAL RELATIONS
The following general relationship are true:

(62) (62) (62)
0z/y \0x/, \0y
For a function ¢ = ¢(x, y) and a given constraint z,

(5.~ o), * 55, ).

= -1

X

12



1.9.3 HOMOGENEOUS FUNCTION THEOREM

A homogeneous function of order k is one where f(Aa, Ab,Ac) = A¥f(a, b, c). Therefore, all extensive
variables are homogeneous functions with degree 1. Euler’s homogeneous function theorem states that for
an arbitrary homogeneous function f with degree k = 1,

f(Ax) = Af (x)

the following must hold

f(x) = x - grad(f(x))
Applying this to the definition of entropy, for example, yields

0S

S(N,V,U) = (N,V,U) d(S(V, Vv, 1)) —N( ) +V<as> +U(as)
] 1] - 1] ] gra ) ] - aN V'U 6V N,U 6U N’V

1.10 THERMODYNAMIC RELATIONS

The measured properties of a system are P,V,T and composition. The fundamental thermodynamic
properties are U and S, as previously discussed. There are also derived thermodynamic properties. One of
which is H. There are also two other convenient derived properties: F, which is Helmholtz free energy, and
G, which is Gibbs free energy. The derived thermodynamic properties have the following relationships:

dH =dU +d(PV) dF =dU—d(TS) dG = dH — d(TS)

The fundamental thermodynamic potentials are given by

dU=TdS—PdV+ZuidNi
i

dH=TdS+VdP+ZuidNi
i

dF=—PdV—SdT+ZuidNi
i

dG=VdP—SdT+zuidNi
i

With these expressions, one can derive the following relationships:

as V,N aV S,N
P,N S,N
( ) — ( ) =P
" = -5 | =

(66) _ s (66) _y
oT)pNn OP/rn

13



(65) P (65) K
oV/yy T \ON)yy T

w=(ow), =, =G, ~Gw)

12 V,S,Nj:i l P,S,Nj;i 12 T,V,Nj:i 2 T'P'Nixj

7).~ ),
7).~ ),

=

c _(6U> _T(GS) c _<6H> _T(65>
V=\ar/, ~ " \aT/y p=\ar/p " \oT/p

It is useful to know the following identities:

1(61/) _ 1<6V)
F=vGr), *=vG),

where 8 and x are the thermal expansion coefficient and isothermal compressibility, respectively. The

a(G/T a(G/T
P

The major Maxwell relations are

), =~ ),

or ), \a@/T)
_ d(F/T)\ _ (9(F/T)
V=T (T) - (ml—/m)
L (3E/W (aF/V)
G__V2< v )T_<a(1/V)>T

14



2 FUNDAMENTALS OF STATISTICAL MECHANICS

2.1 BRIEF REVIEW OF PROBABILITY
When dealing with mutually exclusive events, the probability of either event happens is given by

pij =Pi t )
When dealing with independent events, the probability that both occur is given by
Pij = piPj

The number of arrangements of n objects of which p is one kind, g is another, r is another (and so on) is
given by
n!
# arrangements = —p! P
We now consider the number of ways of making a choice if order of choice is important (i.e. a permutation).
The number of permutation of r objects out of n total objects is given by

n n!
r= (n—r1)!

We now consider the number of ways of making a choice if order of choice is not important (i.e. a
combination). The number of combinations of r objects out of n total objects is given by

!
"Cr = (Z) ~ 7l (nn— )

2.2 BRIEF OVERVIEW OF AVERAGES: AN EXAMPLE
Consider a model system that has an energy given by E = %kxz. Find a distribution for p(x) and use it to

calculate (x), (x?), and (E).

We know that the probability is defined as

The partition function here is found by integrating over all x (assume x = 0) so

_Jex?

e 2kgT 2k  _ kx?
p= = e 2kgT
o X% kgT

fo e 2kgT

The value of (x) can be found from

[oe]

(x) = f xp(x)dx =

0

2kgT
k

The value of (x?) can be found from

15



(x?) = f x2p(x) dx = kBTT

0

The value of (E) can be found from
(E)—<1k 2>—1k( 2y = 1peut
T E

2.3 MICROSCOPIC DEFINITION OF ENTROPY
Boltzmann’s hypothesis stated that entropy is related to some function of the number of quantum states, .
In other words,

S=¢W)

where ¢(W) is some unknown function of W. To determine this function, we consider the following
argument. Imagine two systems, A and B, which are not interacting (and therefore independent of one
another). Their entropies are

Sa = d(Wy)

Sg = d(Wp)
as would be expected. Since entropy is an extensive quantity, we can define the total entropy as simply

Sap =S4+ S5
Since the two systems are independent, the total number of quantum states is given by

Wpp = WpWp
Therefore,

dWyp) = d(WyWp) = p(W,) + ¢(Wp)
The solution to the above equation
¢W) = kgIn(W)

where kg is some constant (which we know now to be Boltzmann’s constant). As such, we see that

S =kgIn(W)

To illustrate the utility of this equation, consider N non-interacting molecules moving within a volume V.
We can imagine specifying the position of each molecule by subdividing the total volume into individual
volumes of size AV. The number of ways to place a particular molecule in the volume is
W= %4
AV
In words, if this box had a volume of 100 L, and we had partitions of size 10 L, there are then of course 10
ways to place a single molecule in the box. The number of ways of arranging N molecules in the box is

VN
=)
N7 \av

16



since each molecule goes in independently of the rest. Therefore, the entropy is

S = Nkgl ( 4 )
B VT
Of course, this is reliant on the arbitrarily defined volume size AV. This is not a concern, however, because
S is always defined with respect to a given reference state. If we take an entropy change (given the same
V), we will find that

Vs
AS =Sf—5i =NkBln(7>
i

and the arbitrarily defined AV term vanishes. We can also get the pressure of the system now because we
know that

dS\  NkgT
r1(3), -
awvly Vv

which is just the ideal gas law and also gives us a clear definition of Boltzmann’s constant by relating the
equation to PV = nRT. The relationship is simply kg = R/N,.

2.4 MODELING SPINS ON A LATTICE SITE

Suppose there are N particles placed on lattice sites with each particle having a magnetic moment given by
u. Each particle’s spin can be either spin up (i.e. spin +1/2) or spin down (i.e. spin -1/2). If the spin points
up, the particle has an energy given by —e (i.e. —uB) and if the spin points down the particle has an energy
of +¢ (i.e. +uB). If we define the number of particles that are spin-up as n,, then the number of particles
with spin down is simply n, = N — n,. The total energy is then

U=-ne+(N—ny)e=Ne—2n¢
The number of ways of choosing n, spin-up particles out of a total N particles is given by

N!
W=———

The spin system’s entropy is then

N!
S =kgIn(W) = kgln (m)

This can be easily evaluated, but the problem is that a large lattice will have large values of N! (and
potentially n,!). This can make calculations quite difficult due to the sheer size of these numbers. As such,
a useful approximation is known as Stirling’s approximation, given by

In(N!") = NIn(N) — N

If we employ this approximation, we get

s~ -t () 3) + (1= ) (1)

We know from the equation U = N& — 2n, ¢ that we can write
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nlzl—m 1—x

N 2 2

where x = U/Ne. This allows us to rewrite the expression for entropy as

1+x 1+x 1—x 1—x
S”_NkB( 2 l“( 2 >+ 2 1“( 2 ))

We recall that we can define the temperature as

1_(65) _(65) dx_(OS) 1
T \ou/)y, \ox/,du \ox/y Ne

1—kBl (1—x>
T 26 "\1+x

As such,

which is equivalent to saying

=~ (g 7)
X = an kBT

We can convert this back to be in terms of U to get the equation of state

&
U = —Ne&tanh (m)

We know that U = —n, & + n,e. As such,

This means that

&
nl - nz = Ntanh (k_T)
B

This is the difference in populations as a function of measurable parameters. In electromagnetism, there is
also the quantity known as magnetization, which is the magnetic moment per unit volume. The
magnetization is simply

pu(ny —ny)  uN (#B )
M= 22 =8 panh (—
v v AT

where B is the magnetic induction field.

2.5 MODELING A RUBBER BAND

We now consider a simple model of a rubber band, which we model as a collection of links that lie in the
+z or —z direction. The work done on the rubber band when it is extended by an amount d? is F d£, where
F is the tension in the band. Therefore, the energy energy is given by

dU=TdS+F df

From this relation, we can say

18



Fdf=dU—-TdS

F " dln(W)
?‘_B< ¢ )U

We will define n,. as the number of links in the +z direction and n_ as the number of links in the —z
direction. For a chain of N links, W is given by

N! N!
Conglnl! T ng ! (N —ny)

With § = kg In(W), we can say

We can then say
In(W) = In(N!) —In(n,!) — ln((N — n+)!)

which is the following via Stirling’s approximation

i) ~ = () () + (1= ) (1= )
The total extension is
t=my—n_)d=2ny,—N)d
where d is the length of each link. This means we can write an expression

?
n_+=1+m=1+x
N 2 2

where x = £/Nd. This makes our expression for In(W) become

o0 == ((F )+ () ()

The tension is also rewritten in terms of x as

F " dln(W)\ dx
T "B\ ox , 4

dx
where —; = 1/Nd so

F kg <6 ln(W))

T  Nd ox

We can plug in our expression for In(W) to get

F—kBl (1+x)_k31 (Nd+{’)
T 2d "\1—x) " 2d "\Nd—¢

For small values of £/Nd, we get
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kgT?
~ Nd?
Therefore, we see that tension is proportional to T#. Similarly, for a rubber band under constant tension,
the length will decrease upon heating (and vice versa).
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3 THE CANONICAL ENSEMBLE

3.1 THE PARTITION FUNCTION

Let us consider a system with multiple energetic states, each occurring with a different probability. We
wish to be able to describe the thermodynamic behavior of this system at constant temperature, volume,
and number of particles (this is referred to as a canonical ensemble and sometimes an NVT ensemble). The
probability of being in a state i out of all possible states j is given by

Wi
pi =
W
When dealing with energies, we can say that
_.Ei
Wi =e kT
Therefore,
E;
e ksT
pi = Ej
Y e kgT

We define the partition function of a particle to be

_Ej

ZEEeRTT
j

such that
Ej
e_kBT
pi = 7
For a system of N distinguishable particles,
ZN = ZN
For a system of N indistinguishable particles,
ZN
ZN = m

for alarge N.

When the probabilities are not equal, the entropy is given by the formula

S =~k ) piIn(po)
i

3.2 THERMODYNAMICS FROM Z
We have that entropy is related to probabilities now. Recall that
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bi = 7
Let’s take the natural logarithm of this expression
In(po) = ~ -~ In(2)
kgT

Plugging this into the expression for entropy yields

S =kpg Zpi (ki_lT + ln(Z))

4

The average internal energy is defined as

U= ZPiEi
i

SO

~| g

N + kB ln(Z)

which can be rewritten as
U—TS =—kgTIn(Z)

We know that F = U — TS, so
F = —kgTIn(2)

From the previously derived thermodynamic relations relating free energy to P and S,

oF a(In(2))
b= _<W>T B kBT( v >T

oF da(T In(Z2))
=) (1)

_ 91n(Z
U=F+TS=kBT2< n( )>
ar ),

We can calculate Cy, as well

as 9%F 9%(Tn(Z))
e =1(57), = (), = (S ),

Essentially, once we know the partition function, we can calculate entropy and free energy, which make it
possible to calculate most other thermodynamic quantities of interest.
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3.3 THERMODYNAMICS FROM Z: AN EXAMPLE

Suppose that E; is a function of V. Show that P = —N(JE /dV'). We start with the partition function for N

indistinguishable particles,

N

ZN  Ziexp (- kEBiT)

N NI

Z

The Helmholtz free energy is

E;
F, = —kgTIn(Z) = —kgT| Nln (Z exp (_ﬁ>> + kgT(NIn(N) — N)
. B

4

The pressure is then

_E
P:_(aF> kT oln (Siexn (- 7))
T

v v

This is difficult to compute though, so we will use the identity that

aln(y(x))_ 1 dy(x)
0x ~y(x) ox

SO

~ksT/\oV

o T a(Eiexp (—kEB—‘T)) _ NksT <Z exp (_ E; )( 1 )(aEi)T)

We note that

SO

p=-ny (%), =5
= Pi\av). = Mav

L

3.4 TRANSLATIONAL PARTITION FUNCTION
Recall from quantum mechanics the particle in a box solution to the Schrodinger wave equation,

h2n2gm2
" mi2

We can write the partition function for one particle in the box as the following
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oo oo

0
_En_ , , L
Z1=Ze kBT=Ze_V” zfe‘yn dn = —
Ap

0

n=1 n=1
where

1 h*n?
V= koT 2ml2

1
1 = 2mh?\2
b= mkgT
This only applies for sufficiently small y for the summation to be computed as an integral. The A, term is
known as the thermal de Broglie wavelength.

To scale this up to a 3D particle in a box, the energy term is modified to become

h2m?
E, = T (n2 +nZ +n2)

such that he partition function for a single particle in the 3D box becomes
k 2 3
mkgT\2 L
Z, =1 (—B> =73
2mh? Ay

It is important to note that this is the translational partition function for a molecule. In other words,

3
(mk,ﬂ)i 4
2mh?) A3

Zirans =

where V is L3 for a box. From this, all other thermodynamic quantities can be derived. For instance,

3. /mkgT
F1 = _kBTln(Zl) = _kBT (1n(V) + 511’1 ( ZnhZ ))

However, if we want to write the Helmholtz free energy for an N particle system (where all particles are
indistinguishable), we cannot simply multiply F; by N. We need to instead use the statement that for large
N, Zy = (Z,)N /N! for N indistinguishable particles.

3.5 ROTATIONAL PARTITION FUNCTION
The rotational partition function comes from the rigid rotor quantum mechanical model, which has energy
levels of

_R2E(8+ 1)
¢ 21

where I is the moment of inertia and ¢ is the rotational quantum number. The moment of inertia is defined

as
I = Z m;r?
i
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where r; is the distance of an atom i from the axis of rotation. For a diatomic molecule, the moment of
inertia can be conveniently expressed as

where u is the reduced mass and d is the distance between the two atoms. For a linear, symmetric molecule
(e.g. CO,), the moment of inertia is I = 2m,1Z,, where m,, is the mass of the oxygen atom and r¢,, is the
C-O bond length. For a triatomic molecule, such as the D-D-H transition state, the moment of inertia would
approximately be I = mpr3, + myr3p (this assumes the center of the molecule is the center of mass,
which is a fairly reasonable approximation). With this definition, the rotational partition function is

d _R2(+])  — _Be(#+1)
Zrot = Z(Zf + e 2ksT = Z(Zf +1)e kBT
£=0 £=0

where B is the rotational constants defined as

B

i
NI

For B < kgT (the “high temperature limit”), we can approximate the summation as an integral to get

< _BE(£+1) ksT
Zrot =~ f(Z{’ + 1)6 keT — df = T
0

Technically though, this formula needs to take into account the symmetry of the molecule and therefore
should be

ksT
rot ~ O_B

where ¢ is the symmetry number (the number of ways a molecule can be oriented in indistinguishable
ways).

For nonlinear molecules in the high temperature limit, the equation becomes

1
2

~
rot ~

Vi (kgT?
o \ ABC

where A, B, and C are the three rotational constants (one for each spatial dimension, resulting from the
different moments of inertia that exist in each dimension).

If we are instead operating in the regime of B > kgT (the “low temperature limit”), we cannot approximate
the sum as an integral. However, we can truncate the series without loss of significant accuracy. As such,

hZ
Zeot © 1+ 3¢ TRoT 4 ...

In either limit, we can use this definition of the rotational partition function to find the Helmholtz free
energy and therefore obtain the other thermodynamic parameters of interest.
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3.6 VIBRATIONAL PARTITION FUNCTION
The vibrational energy levels come from the harmonic oscillator quantum mechanical model, described by

1
En=ha)<n+§>

where w is the angular frequency and n is the vibrational quantum number. The partition function is then

1 hw
®© _hw(n+§) e 2kgT
Zyip = Z e T =——7P"
n=0 1-— e_kBT

In the low temperature limit of Aw > kT, we must use this form of the vibrational partition function. In
the high temperature limit of Aw < kgT, we can approximate the partition function as simply k3T /Aw.

The aforementioned discussion is only valid for a system with one vibrational mode. More complicated
systems can have multiple vibrational modes such that it is more accurate to say

hwj

e 2kpT
Zyip = H—h%
J 1—e ksT

3.7 ELECTRONIC PARTITION FUNCTION
The electronic partition function can be described by

_Ei
Ze = Zgie kpT

i

where g; is the degeneracy and E; is the electronic energy above the ground state.

3.8 FACTORIZING THE PARTITION FUNCTION

Since the total energy of a molecular system is the sum of translation, rotational, vibrational, and electronic
components, we can then say that the molecular partition function is the product of all the individual
components. In other words,

Z1 = ZiransZyivZrotZel

The partition functions derived in the previous sections are only applicable to a single molecule. If we wish
to scale the system up to N indistinguishable molecules, the partition function is simply

7. = (Ztrans)N
NN

ZoinZiotZel
With this, the free energy can be written as
F = —kgTIn(Zy) = =NkgT(n(Ztrans) + In(Zrr) +In(Z;) — In(NY))

We then see that when the energies can be added, the partition functions can be multiplied, and the free
energies of each component can be added (and therefore so can other thermodynamic functions).
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3.9 FLUCTUATIONS IN THE CANONICAL ENSEMBLE

In the canonical ensemble, which has a constant N,V,T in each system, the energy of each system can
fluctuate around the average value. We wish to describe the size of these fluctuations. If we define our

internal energy as U = (E), then we can state
i Eje FEi
U= ZElpl =S
where 8 = 1/kgT. We can then state that

(8U) _ — Y Ef e PEi + <(ZiEie_ﬁEi)2)

), XiePEi (X e~PEN)2

We immediately can recognize that

— iEiZ —-BE;
zz::ie_ZEl (%)
3 Eie P’

<(<zl-e-f“5t)2 ) (EY

such that
ou
(B2 - By = - (5]

We can substitute back in for 8 to get
(E)U) B (E)U) (ar>
o/, \oT/y \op

(EZ) - (E)z = CVkBT2

(5), ko™ = (kg7

such that

We then see that Cy, is an entity that can describe the fluctuations in energy of the canonical ensemble.

27



4 HAMILTONIAN MECHANICS

4.1 FORMALISM
We are often used to dealing with Newtonian mechanics, where momentum is related to force via

._dp _
P=dt~

If the force is a function of the three spatial variables, then this is a set of second order differential equations
in those coordinates whose solution is a function of time. For N particles, there are 3N second order
differential equations with 6N initial conditions. To simplify this formalism, we can make use of
Lagrangian and Hamiltonian mechanics. In Lagrangian mechanics, we let T be the kinetic energy of a
particle. In Cartesian coordinates,

F

m
Tx,y,2)= 5 X2 +y2+22)

We also deal with a potential energy, denoted V. Newton’s equation of motion can be written as

av
ox

with analogous equations in y and z. Now, we introduce a new function called the Lagrangian:

mix =

L(x,y,z,x,y,2) =Tx,y,2) —V(x,y,2)
The generalized momentum is then

oL _or
ox  ox TP«

The generalized force is then

oL oV
ox  Ox
Newton’s equations can therefore be written as
d (E)L) _ 0L
dt\ox/ ox

We now wish to introduce transformed coordinates so that we are not restricted to the Cartesian system.
Let us consider g4, g2, and g5 as the transformed spatial coordinates. If we use this, then Lagrange’s

equations become
d oL\ dL
dt\dq;) dq;

where j = 1,2,3. For N particles, there are still 3N second order differential equations and 6N initial
conditions, but the equations have the same form in any coordinate system. To simplify the second order
differential equations to a set of first order differential equations, we must introduce the Hamiltonian
approach.

Let us define a generalized momentum by
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JL
Pj =37~
] aqj
where j = 1,2,...,3N. Then we can define the Hamiltonian function for a system containing one particle

(for simplicity) as

3
H(p1,02,73, 91,92, q3) = Z pj4; — L(41,42, 93,91, 92, 93)
j=1

We can write the Kinetic energy as

3N
T = Z aj(q1, qz; > (Z3N)q]2
j=1

where a; are functions of the generalized coordinates. If the potential energy is a function only of the
generalized coordinates, then p; can be defined by

oL 0T i
Pj :a—%=a—%=2aﬂj
This then lets us write that
H=T+V

such that the Hamiltonian is just the sum of the kinetic and potential energies. If the Lagrangian is not an
explicit function of time, then the time-derivative of the Hamiltonian is zero. Let us begin with the definition
of H

dH = Z q;dp; + ijdqj - 5—_quj - a—quj
j j 7 ol 704
We can use the previously derived equations to then state
dH =) q;dp; + ) p;da;
] ]
The total derivative of the Hamiltonian is
dH = Z(a—H>dp- +Z<6—H>dq-
: ap;) : aq;)

Therefore, comparing the last two equations it is clear to see that

oH .
ap,
and
0H )
o, P
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with j = 1,2, ...,3N for N particles. The last two expressions are Hamiltonian’s equations of motions. For
N particles, there are 6N first order differential equations and 6N initial conditions. In particular, the
Hamiltonian equations of motion describe the motion of a particle through a phase space composed of p;
and q; coordinates. For a classical continuous system, the canonical partition function for one particle is

H
fff dp;dp;dpy fff dq;dq;dqy eXp( kT )

Here, the i, j, k subscripts are used to represent three spatial coordinates in a given coordinate system. Note
that if we are dealing with a system that is in less than three dimensions, the volume integral (and the
number of derivative terms) would change accordingly. In addition, recall that g is just a generalized
position variable. So, if we are operating in Cartesian coordinates, the above is simply

H
Zy = 3 ff dpydp,dp, ff dxdydzexp( )
h kgT

4.2 PRACTICE PROBLEMS

4.2.1 CLASSICAL SPRING MODEL
Consider a one-dimensional spring, whose Hamiltonian can be expressed as

p*  cq?
H=—+—
2m 2

Find the partition function of one particle whose energy follows this expression.

We start with the classical, continuous partition function for one particle

H
jﬂ dp;dp;dpy jﬂ dq;dq;dqy exp< KT )

We are only operating in one dimension, so we can more simply say

n=if [ aen(-57)
=3 ) dp | daexp (-1

Plugging in the Hamiltonian,

2
p® _ cq?

1 mt 2

Z —Efdpquexp kT

We can split up the exponential into parts

7, =1 "\, @’ \,
1‘5[ T 2kgT pfeXp "~ 2k,T )1

This has the solution

anB

J2mmkgT = 2nky \f
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4.2.2 CLASSICAL IDEAL GAS

Consider an ideal gas consisting of N particles that obey classical statistics. The energy of a particle is ¢
and is proportional to the magnitude of the momentum, p, via € = c|p|. Find the equation of state and
energy of the gas. Consider the particles as structureless.

Let us first begin with one particle. If the particle is structureless, we are only considering translational
contributions to the partition function. We start with the classical, continuous partition function for one

particle
1 H
Z; = Jff dp;dp;dpy fff dq;dq;dqy eXp( )
h kgT

We recognize that we are dealing in three dimensions, so these integrals will be triple integrals. We also
know that the Hamiltonian is a representation of the energy, so we can substitute in & for H. This allows us

to then say
€
Z; = PE ff dpydp,dp, ff dxdydz exp( kT )

Since the momentum and position variables can fluctuate from —oo to +oo, those are the bounds of the
triple integral in the dp; terms. For the spatial triple integral, we can simply recognize that integrating over
the three spatial coordinates is the volume of the system, V, so

fff dpxdpydp, exp( kT )

Plugging in for the energy

clpl
Z1=13 ﬂ dpxdpydpzeXp< kT

To evaluate this integral, we transform it into spherical coordinates in momentum space

21

Vv
Zy = ﬁf
0
since |p| = /p,% + p3 + pZ = r. This can be integrated to yield

8nV rk
Zl_h3<3)

T ©o
ff ex r 2sin @ drdfd¢
00

Scaling this up to N particles,

z¥ 1 (8nv ks T\3\"
INENTT WM F(T)

The free energy is
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1 (8aV (kpT\*\ 8V (kyT
F=—keTinzy) = ~kyTin( (55 () ) )=~ (W0 (55 (5o

=—k TN(l (8 V)+31 (kBT)+1)
- B "N " he

We can then note that

b (6F) __ kgTN _nRT
- \ov)y V.V
which is the ideal gas law. To find the energy of the gas, note that
U=F+TS

Therefore, we first need the entropy. This is

S = (aF) =k TN(I (8 V)+31 (kBT)+1)+3k N
—\or), =TTy "\ he B

Therefore,

U = 3kgTN = 3nRT

)3> - 1n(1v!)>

We do not get the typical answer for an ideal gas of U = %nRT since the Hamiltonian does not have three

guadratic terms (it only has one — the one for the translational component).
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5 CHEMICAL EQUILIBRIUM
5.1 CONDITIONS OF CHEMICAL EQUILIBRIUM

We now consider a simple equilibrium reaction of A & B, such as isomerization or the folding of a protein.
We know from kinetics that

where K is the chemical equilibrium constant. We wish to relate chemical equilibrium to chemical potential.
At constant T and V,

dF = —=SdT — PdV + pyudny + pgdng
becomes
dF = pydny + ugdng
If we define ¢ as the extent of reaction such that dé = —dn, = +dng, then
dF = (up — pa)ds
such that

(6F) B
o€ ry Up — HUp

At equilibrium, we know that the derivative must be zero, and therefore equilibrium in this system is defined
as being when u, = ug. We could have repeated the same procedure constant T and P. As such,

becomes
dG = pydny + pgdng
such that
G
(5)113 =HUp — Ha
We can also determine that the chemical potential of a species i by

b = uf + s Tn ()

5.2 CALCULATING EQUILIBRIUM CONSTANTS
This is effectively a mini-summary of Sections 3.4-3.8. From kinetics, we know that we can express the

equilibrium constant as
AU vy
K: = exp (— kB_T) nZi

4
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where AU represents the energy change of the reaction. Note that if you have bond dissociation energies
(BDE), that AU = BDEpgnds broken — BPEbonds formed IN Order for the sign convention to work out since
BDEs are tabulated as positive quantities.

We recall that the partition function can be factorized, so each species’ partition function is the product of
the various components. Recalling from before, the translational partition function per unit volume is

3
Zyrans 1 (ankBT>§

v a3\ n2
In calculating K, you must use Z.,ns/V to get the units correct. Common values of Z,.,,s/V are about 10%*
cm?,
The rotational partition function is different depending on the shape of the molecule. For a linear molecule,

8m’lkgT T

rot — =
oh? 00,0t

where 6, is the rotational “temperature”. For a nonlinear molecule

1 3
8m2(8m31,1,13)2(kgT)2
rot = 3o

In these equations, o represents the symmetry number and is determined by the number of spatial
orientations of the subject molecule that are identical. For easy reference, it is a value of 2 for linear
molecules with a center of symmetry and 1 for linear molecules without a center of symmetry. The quantity
I is the moment of inertia, and for the nonlinear case they are the three principal moments. The moment of

inertia is defined as
I = Z m;r?
i

where 7 is the distance to the axis of rotation. For a diatomic molecule, the moment of inertia is I = uR?
where p is the reduced mass and R is the distance between the two atoms. For a linear, symmetric molecule
like CO,, the moment of inertia is I = 2mqré,, Where mg is the mass of the oxygen atom and r¢g is the
C-O bond length. For a triatomic linear molecule, such as a D-D-H transition state, the moment of inertia
would approximately be I = mpr2, + myrip (this assumes the center of the molecule is the center of
mass, which is a reasonable approximation). The value of Z,.,, is unitless and approximately 10% — 10* for
linear molecules and 103 — 10° for nonlinear molecules.

The vibrational partition function is given by

n n

per=T10-en(-20) <[ T(1-om(- %)

i

where n is the degrees of vibrational freedom, v; is the vibrational frequency from IR or Raman
spectroscopy, and 8, is the vibrational “temperature”. The value of Z,,;;, is unitless and approximately 1
to 10. Note that spectra normally yield wavenumbers with units of inverse length. To convert a wavenumber
7 to frequency, use v; = c¥;.
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Finally, the electronic partition function is given by

Zu= D g (=)
el i i kBT

where g; is the degeneracy and ¢; is the electronic energy above the ground state.

5.3 GRAND CANONICAL ENSEMBLE
5.3.1 DEFINITION

In the canonical ensemble, we assumed constant NVT conditions. We now wish to consider the case where
we can let the number of particles fluctuate, which is at constant VT conditions instead.

The probability to find a member of the ensemble that contains N particles and is in an energy state E; (N, V)
IS given by
_(Ei—uNy)

e kgT
Pi =

where E is the grand canonical partition function, given by

_(E-uN)

[1]
Il

states

It is important to note that this sum is over all possible microstates. That includes all combinations of energy
levels and N. As such, the grand canonical partition function (for one type of particle) can be restated as

_(Ej—uN)
DRI
N i

where the inner sum is over all possible energy states, and the outer sum is overall possible number of
particles. Since the exponential can be split into the product of two exponentials, it is also worthwhile to

note that
MN
E = Z ZNekBT
N

5.3.2 CONNECTION TO THERMODYNAMICS
We recall that the entropy is given by

[1]

S =—kg Z p; In(p;)
7

Plugging in our probability expression gets us
S = N + kg In(Z
T g In(&)

Therefore, we define a new state function called the grand potential that is

®=U-TS—uN
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The definition implies that
d® = dU — d(uN) — d(TS)
If we note that

dU =TdS — PdV + udN
then

dd = —PdV — Ndu — SdT

_ @D\ (3(TIn(E)
S—‘(—T)V,ﬂ"‘B(—aT )
ey (3(n(@)
P‘_(W)m_kﬂ< v >w

_ by (0(n(E)
N=- <a>T,V - kBT <T>T,V

It is also clear from our definition of the grand canonical partition function and grand potential that

This allows us to state that

® = —kyTIn(E)
PV = kzTIn(&)
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6 THERMODYNAMICS OF BIOPOLYMERS

6.1 MEAN SIZE OF RANDOM WALK MACROMOLECULE

Let us start by considering a lattice model with a lattice constant determined by £. The value of £ represents
the distance over which a polymer bends. We can then relate the contour length of the polymer (i.e. the
length of the polymer when fulling outstretched), L, and the number of steps taken, N, via

N=-
¢

The end-to-end distance of the polymer is given by 7. Let gy (#) equal the total number of walks on the
lattice that start at the origin and end at 7. This implies then that Y= gy () is the total number of possible
configurations of the polymer. We will define this as

Z In @) = grot = ¥
T

It can be shown that that y = 2 for 1D, y = 4 for 2D, and y = 6 for 3D. Before we get Z, let us try to get
the size of the polymer, given by /(72). If we define the position vector as # = ¢, + £, + -+ + £y then

2

N N N N N
%) = <<Z ?1-) )= ) By =) E+ ) @k

=1
Since every step is independent of all steps that preceded and follow it, the second term on the right-hand
side is zero. In addition, (¢2) = £2 since ¢; = +£. Therefore,

(7?) = N2
The polymer size, R, is then

Ry = (72) = £VN = VI?

6.2 RANDOM WALK: DIFFUSION
Let po (7, t) be the probability of a diffusing random-walker particle to be a distance 7 at a time ¢. It can be
shown that the probability is
FZ
e 4Dt

Do = 3
(4nDt)2

To find (#2), we note that the following statement is true (so long as the probability function is normalized
such that it has a value of 1 over all space)

[oe]

(72) = f 720 (7) dF

—00

Plugging in our probability
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00 72

(72) = fr-z—e_m dr
3
“w (4mDt)2

This would be a nightmare to actually integrate. We can note the following identity:

[ee]
_ 22 T\2
fe ar dF=(—)
a
—0o0

To make our exponential in (#2) look like the above integral, we note that @ = 1/4Dt. Substituting this in
yields the following (and I pulled out a constant factor in front of the integral):

1 |
()= — f F2-ai? g
(4nDt)2 4

This almost looks like the tabulated integral, except for there is an 72 factor inside the integrand as well.
We can solve this easily by noting that

—a?z)

Therefore, we can say

o 3 3
(7) = —— ( d fe-arzdr) ( - (”)):—1 (3% ) = 6ot
(4nDb)? da o e AN (4nD)z \“ a2

Therefore, /(7*2) ~

6.3 ANALOGY TO POLYMERS

Using the previous solution, we make an analogy to polymers. For diffusion, we dealt with time (t) whereas
for polymers we deal with a length scale N (defined by t/At, where At is a discrete time step). It can
therefore be shown that the size is proportional to /N (instead of v/t) for polymers. From our expressions
of

(7?) = N2
and
(¥?) = 6Dt
we can equate them to yield
2N 3 12
6t 6At

For polymers, the probability can be expressed as the following, as discussed in the next section:

3 % 372
= 2N{2
p (27TN{’2) €
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6.4 ENTROPIC SPRING MODEL
Using the previous Gaussian chain formulation, find the probability that the two ends of a polymer chain
are at a distance & or smaller from each other. To do this, we begin by recalling that

3 % 372
=|— 2N£2
p (Zanz) €

We essentially want to calculate the probability the two ends are within a volume slice of distance 4§, so

T 2w 6

=ff frzpsianqubdr
00 0

This becomes

po =4m | r’pdr

O\D}

or
36
2
rée” 2N£’2 dr
0

Po = 21'[N€2

If we can assume that § << v/N¢, then the exponential is approximately 1 and therefore
3 1
= (mm) 5= () (9
Po="T\2nnez) 3~ \ane) \7
6.5 ENTROPIC RESTORING FORCE

For polymers, the probability of being in a given state is the number of ways to get a given 7 divided by the
total number of configurations. We shall denote this as follows

3

, gn(@
p(#,t) = ’)V/N

Therefore, using the identity N¢2 = L#, we can find gy (#) to get

3 =
2 _37

2N?Z
ze 2Nt

(2nLe)2

yV3

gn(@ =
We can now calculate the force associated with a given end-to-end distance. The Helmholtz free energy is
given by
F=U-TS
where U is just the internal energy of the system, which is a constant. Since
S=kg ln(gN(?))
we get
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F=U—kgTIn(gy(@®)
Since U is a constant, we can say

3ksT .,

1
F = const + L7 72 = (const + E) K12

where K is the entropic spring constant given by

3T
T

The restoring force for a stretched polymer is driven by entropy.

6.6 FORCE AS A FUNCTION OF EXTENSION
We can use the machinery of statistical mechanics, in particular the canonical ensemble, to determine the
force and other macroscopic properties. Recall that the canonical partition function is

_En_
Z = z e ksT
n
For this discussion, we will rearrange our definition of Z to instead read

E

Z= gu(B)e Tl
E

This is now a sum over all allowable energies, and gy (E) is the energy level degeneracy (known as the
density of states). If E is thought of as the work done to move one end of the polymer to move it from the
origin to a position 7, then

E=—-F %

Plugging this in yields

=S o

zZ = Z gn(F)eks
7'!

We recognize that we can substitute in k into gy (7*), remembering that equivalence N¢ = L. As such,

Nas 72 Noo 2 Noo 1 K72
y¥3z2 _31° 32 37 y¥3z _1lkr

2\ — 2 — — 2kgT
91\/(7”)——33 2N#2 = se 2L = e kg

(2nLe)2 (2nLe)2 (2nL)z

Plugging in for gy yields

3 5 N

Z yN3Z 12 PP Z 1k PF

Z — —38 ZkBTekBT = const - e 2kgT " kgT
7 (2mLt)2 7

Converting this to an integral in the continuum limit,
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_1kf? F7
7 = const - fe 2kpT " kpTdy

— 0o

Let us assume that F only acts in the X direction. As such, F, = F, = 0. Then, if we write the integral in
Cartesian coordinates (and noting F = F, = F)

oo (0.0) [00)
_1;cx2+ Fx _1ky? _1kz?
Z = const - fe 2kpt kpTdx fe 2kpT dy fe 2kpT gz
_o o s

This can be integrated by using the following identity (in addition to the one already mentioned before):

b 2
fe_“sz’ﬁxdx: Ee4ﬁ_0f
a
Employing this identity yields
2mkpT\>/? _F* _
Z=const-(( " ) ez’CkBT>

We now wish to obtain an expression for (x). To do so, we note that
01n(2)
oF

To see why this is true takes a bit of foresight. The following is a brief explanation. Recall that the average
value of a function ¢ is going to have the form

(x) = kgT

_E@)
[ ee Rl

() 6]

fe_kBT

We want to find an expression that has this form. We begin with our expression of the partition function in
its integral formulation:

< _1Kx2+jz_ ° _1ky? ° _1kz?
Z = const - fe Zkpt "kpT dx fe 2kpTdy fe 2kpTdz
Now, we take the derivative with respect to F and divide by Z to get
1 < _1Kx2+jz_ < _1ky? ° _1kz?
const - —— fxe 2kpt "kpTdx fe 2kgT dy fe 2kpT dz

kT

— 0o — 00 — 00

10Z 1

ZOF Z

We see that the integral in the x direction now has an x term multiplied by an exponential. That looks just
like the expression for the definition of the average value | quoted above! This means that

1907
(x) 7 3F
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or put another way

B 01In(2)

X}~ —3F

with the constant of proportionality being kgT. It is important to note that we do not include the lumped
constant term in the expression for (x) since it is also present in Z and will therefore cancel. We now
calculate (x).

In(Z) = In(const) + 1 (anBT)+ P
n = In{cons 5 n p ZKkBT
Therefore,
dln(Z) F
OF  kkgT

This then means

dn(Z) F _1L¢

OF Kk 3kgT

(x) = kgT

Therefore, if we plot (x) as a function of F, it will be a line with a slope of one-third. While this is true
experimentally for small to moderate values of F, the polymer obviously cannot extend infinitely — it must
level off at high F and approach the contour length. This is where the following models come into play.

6.7 FREELY JOINTED CHAIN
In the freely jointed chain model, we model a polymer by discrete segments connected by hinges. We shall

discretize the polymer curve with tangents, each with a length f_, The absolute value of the tangent vector
is equal to the persistence length, |E]| = £. We begin by writing the partition function for the system. We
only include the configurational part (i.e. any factors of 1/h and any momentum integral terms will be

neglected) because we really care about ratios of partition functions, and constants will cancel. The energy
is now

sy
Il
|
T
M=
H

The configurational partition function is then

FyN, g
Z = fdﬂlfdﬂz fdQNe kpT

where

2T 1

f dQ; = Of do; Of d6; sin(6))

To explain what’s going on here, we are doing our position integrals over a spherical coordinate space, but
only the angular terms matter since each chain is assumed to have the same length. The exponential in the
definition of the canonical partition function usually contains the negative of the Hamiltonian. In this case,
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the energy is simply (negative of the) force times the distance, which is now this tangent vector. We can
note that from the definition of the dot product,

F- f] =F¢ cos(Qj)

This then means we can rewrite the partition function as

FYi, €cos(6;)
= [ [ a0, [ any T

We can rewrite this without the summation in the exponential by the following (since sums in an
exponential can be rewritten as the product of exponentials):

Ff cos(6;)

7 = l_[fdﬂe kT

Substituting in for our generalized angular coordinates yields

Ffcos(6;)

1_[ f dqb]fde sin(6;)e k8T

=1

That is going to get messy, so let’s evaluate Z; (N = 1) first (or we could note that the two integrals yield
constant terms, so we just raise their product to the power of N in the end). That is,

2 F£cos(6;)

f dqﬁjfde sin(6;)e  *sT

0

The integral over d¢); is just 2, so that can be factored out. The right integral is a bit harder, but can be
done out via u-substitution to yield

F£cos(6;) 2knaT E¢
do;sin(0,)e kT =-"L_sin ( )
f J ( ]) E¢ kBT

Therefore,

, _4nkBT_h(F£)
1= T re MW ,T

Scaling this up to N (distinguishable) chains yields

7 (4nkBT ) h( F¢ ))N
“\re SNk,
If we are stretching the polymer in the x direction, we now wish to find (x) again, so we can use the result
from before that

d1n(2)

= kgT
(x) B OF
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If we really want to prove this to ourselves though, we begin with our partition function in integral form as

FYiL, €cos(6;)
= [ [ a0, [ any

Then we realize that if take a derivative with respect to F and then divide by Z we get the following

10Z 2cos(0;) FEj=1tcos(6))
fdﬂlfdﬂz fdQNZ] 1 6 cos( ) KT

ZOoF Z kyT

That looks like an average of the position and supports the conclusion that

d1In(2)
oF

(x) = kgT

We start with

In(Z) = N1 (4nkBT ) h(F{’ ))
n = n E? sin kBT

We then note that

d asinh(B$)\ _1
e (R) = peotnisr) -

To use this identity, we note that « = 4w, § = €/kgT and & = F such that (x) becomes

= efon(15) )

1 =1 (cotn (5. 7) =)

We want to understand the limiting behavior. At ¢ — 0, coth(¢) — % + %f + 0(&2). Therefore, at the limit

We know that L = N¥, so

of F — 0 we get

—L(kBT+1 F¢ kBT)
X =L F 30,7 Fe

or

(x) 1 F?
L 3kgT

so the initial slope is still one-third, which is good. At & — oo, coth(¢é) — 1, so if we let F — oo, then (x) —
L, and therefore the polymer length approaches the contour length at high force, which is also good.
Experimentally, this is pretty good, but there is another improvement we need to make. At high force, the

value of (x) should decay as 1/+/F, not 1/F. As such, we go to the next more complicated model.
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6.8 WORM-LIKE CHAIN

In the worm-like chain model, we no longer let |E]| = ¢ but instead some microscopic length scale a such
that |E]| = a, such that a « €. We also add resistance to bending, such that the tangents want to be parallel.
The energy function is now the same as the freely jointed chain but with an energy “bonus” for chains in
the same direction (and penalty if not parallel):

N-1 N
—K >t -ty - Z £
j=1 j=1

with K > 0 so that the tangents want to align locally. We then note that

N-1 N—-
~ - - 1 - >5\2 ~
—Kztj'tj_l_ =5 Z tv1— ) —NK

such that

p—\

N-1 N
>\2 ~ = -
5 E (fa1— 1) —NK—F'th

j=]_ =1

N
—.

> 2
We note that (Ejﬂ - E])Z looks like a derivative term. It looks like (Z—;) , Where j is just a counting variable

so its finite difference is 1. If we define an arc length, s, that describes each chain, then we can write £ in
terms of s instead of in j. It can then be noted that a = ds/dj and £ = a7i. As such, we will say

(G i) = di\* (dids\" , (dt\" , (d7
i1 h) T\ ) T\asaq) T4 \as) T4\

Plugging this into the energy expression yields

e (5 e §

J=1

tj
We now convert our sum into an integral in the continuum limit via the following thought process. We start
by noting that since Aj is 1,
Yr=][rd
j

Then we know that a = ds/dj, so dj = 1/a ds. As such,

Yr=[ra=¢fras
]

Plugging this in yields,
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If we define K = Ka3 then
L L
1 dit\? _ L (.
E=—Kf — ds—NK—F-fn(s)ds
2 ds
0 0

The energy is now a function of 72, which is a function of s, so E is said to be a functional. Although it is
not obvious yet, we can simply drop the NK term since it is a constant, and it will be divided out at a later

point. With this adjustment,
L L
E—le dﬁzd ﬁf*()d
= ) dS S n\s S
0 0

We can split this up into a bending and a force component, where E = Eyending + Eforce With

L \2
1 an
Ebending =§Kj Is ds
0

and

Eforce = _ﬁ : fﬁ(s) ds
0

We consider pulling the polymer in the Z direction such that Fis parallel to Z. We note that 7 is a unit
vector (whose magnitude must be unity). As such, we can write it as a function of its components as follows:

/ e (s) \
n(s) = ny ()
k /1 —nz —njz,)

We consider for the remainder of the derivation large forces only (since this is the regime we wish to make
more accurate — the one-third slope at the low-force regime is already accurate). We note that the following
Taylor expansion:

1
JI-§~x1-28+0(%)

We apply this expansion to our expression for 7(s), letting & = n2 + nf, and keeping only the first two

terms, to arrive at

Ny (s)

n(s) = 1ny (s)
1-2 (n2 +n2)

We want to get the derivative term in our Epenging €Xpression. As such,
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which we will simplify to just

This then makes Eyenging bECOME

L

1
Ebending = EKf
0

The Efyrce term can be expressed now with our expression for 7(s) as follows, noting that we only need
the n, term if we note we are pulling in the Z direction only:

L L
S 1 1
Fioree = ~F - [ [ =52+ 3)|ds = —FL 4 37 [ 4 n3] s
0 0

This means

L
1
ds+EFf[n§+n32,]ds—FL
0

L
_ le dnx <dny>
2 ds

0

The —FL term is a constant that will be also be cancelled later on. We now have an expression for the
energy that we can use to find the partition function.

Since E is a function of 7, which is a function of s, we must perform a path integral, denoted by a D
operator, when evaluating the partition function (which is shown below for reference):

_E[1(s)]
7= f e kaT D[i(s)]

This is going to be very difficult to compute, and so before we tackle it, we must convert our energy
expression to Fourier space. Returning to our energy expression, we can write n,(s) (or n,,(s) for that
matter) as

1
) = 1Y 5,00

q

for 0 < s < L. We now assume periodic boundary conditions, such that n,(s) = n,(s + L). This turns out
to be a rather reasonable assumption. This then means that

1 .
Y e ) =1 Y e )

q q

For this to be true, e'?t = 1. Therefore,
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_Zn
Q—Lm

where m = 0,+1, £2, .... We recognize that a constraint on n,.(s) is that it must be real, such that n,.(s) =
ny(s), where the asterisk denotes the complex conjugate. Therefore,

D WECROUEL

q q

This then implies that g = —q such that 7i,.(q) = fix (—q). With these expressions, we can plug in our prior
expression of n, (s) into the integral in the bending energy term, which as a reminder is

dnx (dny) ] ds
ds

(%)z 1971, (q) [( k)Zeiksﬁx(k)]

q k

L

1
Ebending = EKf
0

We now claim that

( )
dS

2

L L

dn 1 ' A A
| (G) ds =g Dna [ el as (@
0 q k 0

We note that
L

fei(q”‘)s ds = Lg1x,0
0

The notation 8,40 Means it has a value of 1 when g = —k and 0 when q # —k. Therefore, we can write
our double-sum in terms of just one sum as follows, plugging in k = —q. Our expression is now the
following (the &, converts the double sum to a single sum and Kills off the exponential)

L

dn 1
[ () a5 =23 o)
q

0

We then note that
~ ~s ~ 2 ~ 2 _ A
(@) - A5 (q) = (Re(fy))” + (Im(Ry))" = A, (q)I?
From the result of the periodic boundary condition, we can also state this is

e (@) - e (—q) = | (@

We can now use this to state
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L

dn 1
[(22) a5 =23 i, o
0 q

This mean our bending term is the following, when we plug in the above term (and repeat the process for
N

¥
1K R R 2
Epending = EZZ q° (|nx(Q)|2 + |7, ()| )
q
We now wish to find the force term, which we recall was:

1
Eforce = —FL + EF f (n2 +n3)ds

We note that

= 2fS el [Sence
q k

Then

L L
1 .
fn;zc ds = ﬁzz f elathsgs Tl (@)7x (k)
0 qa ko
This again can be simplified via the delta function such that
L
2 1 ~ 2
ngds =1 ) [x(@)
0 q
Therefore,
Eforce = —FL + _ZZ |nx(CI)|2 + |ny(CI)| )
Our total energy expression is then
1F 2 . 2
Z @ (1 @P + |1y @[°) + 37 Y (1@ + |y @) -
q
This can be rewritten as
1 N ~ 2
=57 (ke + D@1 + (ka? + Py @) -
q

We now have an energy expression we can use to evaluate the partition function that is now written in
Fourier space. Our partition function once again is
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_E[1(s)]
Z:fe keT D7 (s)]

In Fourier space, we can rewrite the path integral as

f [7(s)] = fd[Re(nx(q))] fd[lm(nx(q))]f [Re ny(q))] fd[lm(ﬁy(q))]

— 0o

We then use this to write our partition function as

(00)

Z = 1_[ fd[Re(nx(q))] fd[lm(nx(q))] f [Re i, (q) ] fd Im ny(q))] kBT

q20 —o

where the product over g = 0 is to prevent double-counting. Note that | have written E; instead of E, which
is what allows me to introduce the product notation.

We want to find the average extension length, (r), if we pull in the 2 direction. As such,

We note from before that f = a7 and that Yif=1/a [ fds,so

L L
(r)= ( TlZ(S) dS) = (nZ(s))ds
[r0m9-]

For large F, (n,(s)) is mostly independent of s so

(r) = L(n,)

We can plug in our expression for n, to get

1
%: <m> ~ 1—5((71925)"‘("32/))

We need to evaluate (n3) and (n). We start by noting that
1 )
M) =13 ) ) el ()
q k

We’re a step closer, but we how need to evaluate (7, (q)#,(k)). | will temporarily switch to a notation of
g, and q, instead of g and k. As such,

E[fi(s)]
) k5T AX’ Ax D n
(e ()7, (q2)) = Je "E[gf(lsl)?n (q2)DI[1i(s)]

f e k5T DIii(s)]

This integral can be written out as follows
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(P (41) 7 (02)) ]
Tlgso S, d[Re(fx(@)] 2, d[tm(f(@)] 1, d [Re (3, (@)] £, @ [1m (7 (0))] s (q)tr (g2 FoT
_ i

Mgz0 /2, d[Re(Ae ()] 7, dlim(fe ()] 22, d [Re (y (@)] S, d [1m () (@)) ] € FoT

It may not be immediately clear how to simplify this further. However, let us have a brief side-thought. In
general, if we wanted to calculate a function (x*) and we had E,(x? + y? + z) then we could say

x%+y?+z?

_Jdx[dy[dzx*e 8T

(x?)

_x2+y2+22
[dx[dy[dze ksT
2

2 2

X ¥4

Xt _yE oz
However, since the exponential function can be split into three multiplied terms of e *8Te *BTe kBT, the

y and z terms will cancel such that

xZ

[ dx x%e k8T
xz
[dxe ksT

(x?) =

This result can be extended to our worm-like chain problem. We note that our average is just over the q,
and g, dimensions, so can cancel all the integrals that are not those terms. This makes the problem more
tractable. When doing this, and plugging in E;,

<ﬁx (Ch)ﬁx(fh))
(g +P)lAy (a1 _(ka3+F)Inx(qz) I
B J2, d[Re(fie(q)] 7, d[Im(7ie(g2))] [, d[Re(fie(q))] [, d[Im (7 (g2))] i (q) i (q2)e 2LksT ¢ ZLkpT
- - - - - (kaf+P)x(@)I? _ (ka3 +F)Ifx(q2)|?
f_w d[Re(ﬁx(%))] f_oo d[Im(ﬁx(qz))] f_oo d[Re(ﬁx(%))] f_oo d[lm(ﬁx(%))] e 2LkpT e 2LkpT

We then recall the result of the periodic boundary condition: that g; = —q, which we will just call g. As
such, we can simplify the equation further because #,(q)7.(q2) = A(q)Ar(—q1) = [Ax(q)I? =

(Re(ﬁx(q)))2 + (Im(ﬁx(q)))z, and also by only writing our integrals in terms of this general g. Substituting
this in

<ﬁx (‘h)ﬁx (QZ))
, , (qu+F)[(Re(ﬁx(q)))2+(Im(ﬁx(q)))2]
17, d[Re((@))] 7, d[im((@))] [(Re(Re(@)) + (Im(Ra(@))) |
B (kq2+F)[(Re(ﬁx(q)))2+(Im(ﬁx(q)))2]
J7 d[Re(Re(@)] J7, d[im(7x(@)] e 2HkaT

This expression can actually be easily evaluated. We note that

© 2
[ x%e™®"dx 1
=

JZ emaxtdx  2a

To apply this to our expression, we note the following. In general,
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2

[f dx dy (x? + y*)e*(:*+¥?) _ 2 [fdxdy x2e~ax®gmay
[f dx dy e=a(x*+y%) T [[dxdye®%e-@* [dxe-®*  a

B 2 [dxx2e~@" 1

kq®+F
2LkgT'

In our expression, a = x = Re(7,(q)), and y = Im(#,(¢)). Therefore,

2LkgT

(ﬁx (‘h)ﬁx(QZ)) = 5q1+q2,0 m

Switching back to our g and k nomenclature

2LksT

(e (@ (k)) = 8g4k,0 k@ + F

where the &, o ensures the periodic boundary condition of g = —k. We therefore can finally plug this in
to get

1~ 2kgT

(nz(s)) =1 ‘ k2 + F

For large L, we can convert the summation to an integral. The process to do so is below, noting that g =

2nm/L so Aq = 2rn/L:
L L
Zf=ngAq — | rdq

to get

1 [ 2kgT
2n ) kq*>+F

— 00

nZ(s)) =

Of course, we could repeat this whole procedure for (nf, (s)). Plugging these two expressions into (r) yields

L 2

21

— 0o

ry . 1f1 jf 2T 1 ¢ 2ksT
kq?+F 2m ) kq?+F

or

m_ 1 © 2kgT
L 2n ) kq®>+F

—00

This is a contour integral (due to the singularity at g = +i,/F /k). It can be computed, and we arrive at

M _keT
L~ VkF

for the high force limit of the worm-like chain model.
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6.9 1D HARMONIC CHAIN

Consider a one-dimensional harmonic chain of length L, defined with respect to sites that each site a
distance ¢ apart. Each particle in the chain (which sit in a potential well ..., X;m_1, Xm, Xme1» ---) 1S
connected to its neighbors by a spring. So, if an actual particle position is 1, = x,,, + u,,, (Where u,, is just
defined as the displacement from x,,,). The energy is given as

:B_IZ(U +1 U )2+C—,Zu2
2 m m 2 m
m m

We note that in the continuum limit,

—

dm

We, however, want to write du/dx instead. So, if we note that dx/dm = £ then

( 2 - (du)2 _ (du dx)2 _p (du)2
Umer = Um)” =\ ) T \axdm) = dx

Plugging into the left-hand term gets

£ B' ¢ (du) c’ Z
2 dx 2

m

We now convert the summations to integrals such that

L L
B’f 2 c f
2 dx 2

0

0

We can define B = B'f and C = C'/¢ to get

B
:Ef fuzdx

We define the Fourier variable

We shall address the left-hand term first. The squared derivative term can be written in terms of Fourier

modes as
(& | g | [ s

q

Then
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L L
duy? 1 )

[ ar= g3 Yok e asacontn

0 q k 0

We note that
L
fei(‘”k)x dx = L8g410
0

This kills off one of the summations to lead to

L

B
q

0

From the result of the periodic boundary condition, we can also state that is
a(q) - a(-q) = la(g)I?

We can now use this to state

L 2

(2 = 1Y 0o
ds XS—L q-lulq

0 q

We now do a similar procedure for the right-hand term. We note that

u? = Ll_Z[Z eiqxﬁ(q) [Z eikxﬁ(k)‘
q

k

Then

L L
1 )

fuzdx = L_ZZZ f et @+hx gy (g (k)

0 qa ko

This again can be simplified via the delta function such that

L

1
[ ax =1 a@r
0 )

Therefore,

E=27 > qla@P +57 ) |a@)P
T2 T T LM
q q

or

1
E == @B +0)
q
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As in the worm-like chain derivation, we can define the partition function (and therefore the free energy)
as

Z :fe_k%i)[u(x)]

This becomes the following in Fourier space

oo

Z= f d[Re(2(@))] f d[im(a(@))] e T

— 00

If we wanted to continue as in the worm-like chain derivation, we could find (u2(x)). Taking the result
from the worm-like chain derivation,

1 .
W) =33 ) ) e a@ak)
q k

We therefore need to evaluate (ii(g)%(k)), which can be done via

J e_"%ﬁ(q)ﬁ(k)l)[u]
E

[ e FoTD[u]

(@(Qack)) =

As we found out in the worm-like chain derivation, this just becomes

o 1 1 LT
@R = Bqrrogy = Sarno ( L > = Sqr0 gz y ¢

2( 57 (Bq? +0)

Plugging this in gets

1o kyT

Wy =1 L Bq2+C

For large L, we can convert the summation to an integral. We note that Aq = 2m/L,s0

1 (00}
<u2(x)>=2—f da

This is a contour integral with a singularity at ¢ = +i./C/B. As such,

kyT
2VBC

(u?(x) =

It is analogous to the worm-like chain solution.

Now let us assume we wish to find the free energy. For this, we go back to

Z =fe_k%7"D[u(x)]
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F
We recall that Z = e *8T, so

E
F = —kgTIn <f e'kTTD[u(x)])

We recall that
E=— > 1) PBa +0)
2L
q

We must restrict the summation to be g > 0. We write out E into two parts: oneatq = 0 and oneatq > 0
as follows

E =y + ) 2@l
q>0
where

Bg*+C
2L

v(@) =

The factor of 2 is included in the right-hand term in the expression for E to account for all values of g. This
then means our expression for F becomes

OOk 7T a@la@p
F:—kBT1n< f f e Rt d[Re(a(@))]d[im(a@)] | | f f e BT d[Re(a(qD]d[lm(a(q))])

“o —o q>0 —oco —oo0

We can note the following integral:

f j)-oe—a(xz+y2) :g

—00 —O00

Therefore,

kT kT
y(0) 120 2y(q)

= —kgTIn

Plugging back in for y yields

2nkgTL mkgTL

2
¢ 1 1Be*+cC

F = _kBTln

Therefore,

" (2nkBTL) Z (nkBTL )
A BqZ +C
q>
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If we want to get the expression for F in the limit of L — oo, we can do so. We first note that since g =
2mm/L, having large L implies that the spacing between g’s is infinitesimal, so we can convert the
summation to an integral (as we have done many times before). Therefore, noting that Aq = 2r/L,
2mkgTL\ L [ (mkgTL
C >_E rl(Bq2 +C)
q>0

F = —kyT 1n(

We can set the lower-bound on the integral to be g = 0 since it will not greatly affect the integral. Therefore,

1 (anBTL) L fl (nkBTL>
"¢ 2] "\Bgz+cC

0

F = _kBT
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