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1 BRIEF REVIEW OF REACTOR ARCHETYPES 
1.1 THE MASS BALANCE 
The key equation governing processes on the reactor level is the mass balance. In order to inherently account 

for the proper stoichiometry, this is most typically written as a mole balance. The general mole balance for 

a species 𝑖 is given as  

𝐹𝑖0 − 𝐹𝑖 + 𝐺𝑖 =
𝑑𝑁𝑖
𝑑𝑡

 

where 𝐹𝑖0 is the input molar flow rate, 𝐹𝑖 is the output molar flow rate, 𝐺𝑖 is the generation term, and the 

differential term is the accumulation.  

If the system variables are uniform throughout the system volume, then  

𝐺𝑖 = 𝑟𝑖𝑉 

where 𝑟𝑖 is the reaction rate of species 𝑖 and 𝑉 is the system volume. More generally speaking, if 𝑟𝑖 changes 

with position in the system volume, then  

𝐺𝑖 = ∫𝑟𝑖 𝑑𝑉 

such that the mole balance can be written as 

𝐹𝑖0 − 𝐹𝑖 +∫𝑟𝑖 𝑑𝑉 =
𝑑𝑁𝑖
𝑑𝑡

 

Two other useful expressions that should be kept in mind are as follows. For a uniform concentration of 

𝑖 across the system volume 

𝑁𝑖 = 𝐶𝑖𝑉 

Additionally, for a given flow rate  

𝐹𝑖 = 𝐶𝑖𝑣̇ 

where 𝑣̇ is volumetric flow rate. 

1.2 BATCH REACTOR 
A batch reactor is a constant volume reactor has no input or output when the chemical reaction is occurring. 

The batch reactor is often a good reactor archetype for slow reactions. With this information, it is clear that 

the batch reactor has 𝐹𝑖0 = 𝐹𝑖 = 0. As such, the mole balance is  

𝑑𝑁𝑖
𝑑𝑡

= ∫𝑟𝑖 𝑑𝑉 

If the reaction mixture is perfectly mixed (i.e. spatially uniform) so that 𝑟𝑖 is independent of position (a 

common assumption for the batch reactor), then we can state 

𝑑𝑁𝑖
𝑑𝑡

= 𝑟𝑖𝑉 

Solving for the rate of reaction of species 𝑖, we see that  
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𝑟𝑖 =
1

𝑉

𝑑𝑁𝑖
𝑑𝑡

=
𝑑𝐶𝑖
𝑑𝑡

 

where 𝐶𝑖 is the concentration of species 𝑖 and the expression 𝑁𝑖 = 𝐶𝑖𝑉 was utilized. 

Occasionally, batch reactors can be operated at a constant pressure but with a system volume that changes 

as a function of time. In this special case,  

𝑟𝑖 =
1

𝑉(𝑡)

𝑑𝑁𝑖
𝑑𝑡

=
1

𝑉(𝑡)

𝑑

𝑑𝑡
(𝐶𝑖𝑉(𝑡)) =

𝑑𝐶𝑖
𝑑𝑡
+
𝐶𝑖
𝑉(𝑡)

𝑑𝑉

𝑑𝑡
 

1.3 CONTINUOUS-STIRRED TANK REACTOR 
The continuous-stirred tank reactor (CSTR) has an inlet and outlet flow of chemicals. CSTRs are operated 

at steady state (such that the accumulation term is zero) and are assumed to be perfectly mixed. As such, 

the mole balance for the CSTR can be written as  

𝐹𝑖0 − 𝐹𝑖 + 𝑟𝑖𝑉 = 0 

Solving for the reaction rate yields  

𝑟𝑖 = −
𝐹𝑖0 − 𝐹𝑖
𝑉

 

Utilizing the relationship of 𝐹𝑖 = 𝐶𝑖𝑣̇, we can then say 

𝑟𝑖 = −
𝐶𝑖0𝑣0̇ − 𝐶𝑖𝑣̇

𝑉
 

Since the system is at steady state, we know that 𝑣0̇ = 𝑣̇ such that the expression becomes 

𝑟𝑖 = −
𝑣̇(𝐶𝑖0 − 𝐶𝑖)

𝑉
 

Noting that the residence time is defined as  

𝜏 ≡
𝑉

𝑣̇
 

we can simplify the rate expression as  

𝑟𝑖 = −
𝐶𝑖0 − 𝐶𝑖
𝜏

 

1.4 PLUG-FLOW REACTOR 
The plug-flow reactor (PFR) is a tubular reactor operated at steady state and has axial gradients but no 

radial gradients. These types of reactors are useful for fast reactions that could not be as easily observed in 

a batch environment. Since the concentration varies continuously down the reactor tube, so does the reaction 

rate (except for zeroth order reactions).  

For a PFR, the design equation can be solved by differentiating the mole balance with respect to volume, 

but an easier way is to perform a mole balance on species 𝑖 in a differential segment of the reactor volume, 

Δ𝑉. This differential balance can be written as  

𝐹𝑖(𝑉) − 𝐹𝑖(𝑉 + Δ𝑉) + 𝑟𝑖Δ𝑉 = 0 
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since the system is in steady state. Solving for the rate, dividing by Δ𝑉, and letting it approach zero (while 

applying the definition of the derivative) yields 

𝑟𝑖 =
𝑑𝐹𝑖
𝑑𝑉

 

Once again substituting in for 𝜏 ≡ 𝑉/𝑣̇ and 𝐹𝑖 = 𝐶𝑖𝑣̇ (assuming steady state conditions such that 𝑣̇ is 

constant) yields  

𝑟𝑖 =
𝑑𝐶𝑖
𝑑𝜏

 

Note that the design equation can be written in terms of the length of the reactor, 𝑧, and the cross-sectional 

area, 𝐴𝑐, if 𝑉 ≡ 𝐴𝑐𝑧. Occasionally, with PFRs, the superficial velocity will be referred to, which is simply 

𝑢 ≡ 𝑣̇/𝐴𝑐. 
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2 POWER LAW BASICS 
2.1 ARRHENIUS EQUATION 
The main assumption behind the Arrhenius expression is that 𝑟𝑖 = 𝑓(𝑇) ⋅ 𝑓(𝐶𝑖). This is an approximation, 

but it works quite well. The rate coefficient is the term that is a function of temperature but may also depend 

on things like catalyst or solvent. Empirically, the Arrhenius expression states that  

𝑘 = 𝑘0𝑒
−
𝐸
𝑅𝑇 

where 𝑘 is the rate coefficient, 𝑘0 is the pre-exponential factor, 𝐸 is the activation energy, 𝑇 is the 

temperature, and 𝑅 is the ideal gas constant. By linearizing the equation, one finds that  

ln(𝑘) = −
𝐸

𝑅
(
1

𝑇
) + ln(𝐴) 

such that plotting ln(𝑘) vs. 1/𝑇 should yield a straight line of slope −𝐸/𝑅 and 𝑦-intercept of ln(𝐴). 

To find the ratio of two rate coefficients and two temperatures, 

𝑘2
𝑘1
= exp(−

𝐸

𝑅
(
1

𝑇2
−
1

𝑇1
)) 

To provide context, the Arrhenius expression is based on the Van’t Hoff expression, which states that 

𝑑 ln 𝑘

𝑑𝑇
=
Δ𝐻rxn
𝑅𝑇2

 

If we state that 𝑘 is the rate coefficient, replace Δ𝐻rxn with 𝐸 for the activation energy, assume that 𝐸 ≠

𝑓(𝑇) and 𝑘0 ≠ 𝑓(𝑇), and integrate then we will arrive at the Arrhenius equation. This is shown a little more 

rigorously below. 

Assume that we have a unimolecular reaction, such as the isomerization reaction 𝐴 ↔ 𝑅 with forward 

reaction rate 𝑘𝑓, reverse reaction rate 𝑘𝑟, and equilibrium constant 𝐾𝑐 ≡ 𝑘𝑓/𝑘𝑟. The Van’t Hoff equation 

can be written as 

𝑑 ln𝐾𝑐
𝑑𝑇

=
Δ𝐻rxn
𝑅𝑇2

 

which can also be expressed as 

𝑑 ln (
𝑘𝑓
𝑘𝑟
)

𝑑𝑇
=
Δ𝐻rxn
𝑅𝑇2

 

and thereby 

𝑑(ln 𝑘𝑓)

𝑑𝑇
−
𝑑(ln 𝑘𝑟)

𝑑𝑇
=
Δ𝐻rxn
𝑅𝑇2

 

Arbitrarily, we set Δ𝐻rxn = Δ𝐻𝑓 − Δ𝐻𝑟 such that the expression becomes 

𝑑(ln 𝑘𝑓)

𝑑𝑇
−
𝑑(ln 𝑘𝑟)

𝑑𝑇
=
Δ𝐻𝑓

𝑅𝑇2
−
Δ𝐻𝑟
𝑅𝑇2
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Separating the forward and reverse components and integrating will yield the Arrhenius expression in the 

forward and reverse directions, respectively. 

2.2 MASS-ACTION KINETICS 

2.2.1 OVERVIEW 
We assume that rates can be described by  

Rate = 𝑓(𝑇) ⋅ 𝑔(𝐶𝑖) 

where 𝑓(𝑇) is the rate constant from Arrhenius’ law and 𝑔(𝐶𝑖) is the rate law. Empirically, we say that  

𝑔(𝐶𝑖) = 𝐶𝐴
𝛼𝐶𝐵

𝛽
𝐶𝐶
𝛾
… 

which is typical rate law kinetics. In this expression, if 𝛼, 𝛽, 𝛾, … are the stoichiometric coefficients of a 

reaction, it may be (but is not necessarily) an elementary step. Typically, we find that for elementary steps 

∑𝛼𝛽𝛾… < 3. 

2.2.2 FIRST ORDER KINETICS 
We will start by considering the elementary reaction 

𝐴 → 𝑃 

The rate law can be given by  

−
𝑑𝐶𝐴
𝑑𝑡

= 𝑘𝐶𝐴 

Integrating this expression yields 

− ∫
1

𝐶𝐴
𝑑𝐶𝐴

𝐶𝐴

𝐶𝐴0

= 𝑘∫𝑑𝑡

𝑡

0

 

which becomes 

− ln (
𝐶𝐴
𝐶𝐴0
) = 𝑘𝑡 

and thereby 

𝐶𝐴 = 𝐶𝐴0𝑒
−𝑘𝑡 

and a plot of ln(𝐶𝐴) vs. 𝑡 should be linear for first order kinetics. The half-life can be given by  

𝑡1
2
=
ln(2)

𝑘
 

2.2.3 N-TH ORDER KINETICS 
The above process can be done for any integer 𝑛. We will consider the general reaction 

𝑛𝐴 → 𝑃 

The rate law can be given by  
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−
𝑑𝐶𝐴
𝑑𝑡

= 𝑘𝐶𝐴
𝑛 

Integrating this expression yields 

− ∫
1

𝐶𝐴
𝑛 𝑑𝐶𝐴

𝐶𝐴

𝐶𝐴0

= 𝑘∫𝑑𝑡

𝑡

0

 

which becomes 

𝐶𝐴
−𝑛+1

−𝑛 + 1
−
𝐶𝐴0
−𝑛+1

−𝑛 + 1
= 𝑘𝑡 

For 𝑛 ≠ 1, we can state that 

1

𝐶𝐴
𝑛−1 =

1

𝐶𝐴0
𝑛−1 + (𝑛 − 1)𝑘𝑡  

and a plot of 1/𝐶𝐴
𝑛−1 vs. 𝑡 should be linear. The half-life can be given by the general formula 

𝑡1
2
=

2𝑛−1 − 1

(𝑛 − 1)𝑘𝐶𝐴0
𝑛−1 

The units of the rate constant for an 𝑛th order reaction are given by 𝑘[=]concentration1−𝑛 s−1. 

2.2.4 REVERSIBLE REACTIONS 
We will consider the reaction 

𝐴 ↔ 𝑃 

The rate law can be given by 

−
𝑑𝐶𝐴
𝑑𝑡

= 𝑘𝑓𝐶𝐴 − 𝑘𝑟𝐶𝑃 

where 𝑘𝑓 and 𝑘𝑟 represent the rate constants of the forward and reverse reactions, respectively. For the case 

of no initial concentration of 𝑃, one can state that  

𝐶𝐴0 − 𝐶𝐴 = 𝐶𝑃 

Therefore 

−
𝑑𝐶𝐴
𝑑𝑡

= 𝑘𝑓𝐶𝐴 − 𝑘𝑟(𝐶𝐴0 − 𝐶𝐴) 

This can be rearranged to 

−
𝑑𝐶𝐴
𝑑𝑡

= (𝑘𝑓 + 𝑘𝑟) (𝐶𝐴 −
𝑘𝑟

𝑘𝑓 + 𝑘𝑟
𝐶𝐴0) 

To simplify the algebra, we define a quantity 𝑘𝑒𝑞 such that 



POWER LAW BASICS | 9 
 

𝑘𝑒𝑞 ≡
𝑘𝑓

𝑘𝑟
=
𝐶𝑃,𝑒𝑞

𝐶𝐴,𝑒𝑞
=
𝐶𝐴0 − 𝐶𝐴,𝑒𝑞

𝐶𝐴,𝑒𝑞
 

This implies that 

𝐶𝐴,𝑒𝑞 =
𝑘𝑟

𝑘𝑓 + 𝑘𝑟
𝐶𝐴0 

Therefore, 

−
𝑑𝐶𝐴
𝑑𝑡

= (𝑘𝑓 + 𝑘𝑟)(𝐶𝐴 − 𝐶𝐴,𝑒𝑞) 

which can be integrated to 

− ∫
𝑑𝐶𝐴

𝐶𝐴 − 𝐶𝐴,𝑒𝑞

𝐶𝐴

𝐶𝐴0

= (𝑘𝑓 + 𝑘𝑟)∫𝑑𝑡

𝑡

0

 

which is equal to 

ln (
𝐶𝐴0 − 𝐶𝐴,𝑒𝑞
𝐶𝐴 − 𝐶𝐴,𝑒𝑞

) = (𝑘𝑓 + 𝑘𝑟)𝑡  

2.3 DETERMINING THE RATE LAW AND RATE CONSTANTS 

2.3.1 DIFFERENTIAL METHOD 
The differential method says that we should propose a rate law of the type 

−
𝑑𝐶𝐴
𝑑𝑡

= 𝑘𝐶𝐴
𝛼 

We then can rewrite this as  

ln (−
𝑑𝐶𝐴
𝑑𝑡
) = ln 𝑘 + 𝛼 ln 𝐶𝐴 

which can be used to fit a function to find the slope and order 𝛼. It is also possible to plot ln (−
𝑑𝐶𝐴

𝑑𝑡
|
𝑡=0
) 

vs. ln(𝐶𝐴,0) for many initial concentrations to back out the rate constant and order. Of course, any 

conclusion from either method depends on the fit and is only as good as the data. Oftentimes, we are only 

given the concentration as a function of time, not the rate of the reaction. There are three main ways to get 

the rate from the dataset.  

The first method is the graphical method, wherein a smooth curve is drawn through the experimental data 

points on a 𝐶𝐴 vs. 𝑡 graph. At each time instant of interest, tangents are drawn to this curve, the slope of the 

tangent line is the derivative value at that time instant and is therefore the rate. 

The second method is the polynomial method, wherein a polynomial of suitable order is fit to the data. The 

derivative can then be evaluated by differentiating the polynomial expression (typically, the simplest 

monotonic function is the best choice).  

The third method is the finite difference method, wherein we can approximation the derivative via a 

numerical finite difference equation. This, however, requires a sufficient data size to do accurately.   
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2.3.2 INTEGRAL METHOD 
The integral method simply involves deriving the rate laws for a hypothetical reaction order and seeing if 

the data fits the linearized equations. This is essentially just a guess and check method. 

2.3.3 REGRESSION METHOD 
If we assume a rate law to the 𝑛th power, we can use the general integrated rate law of 

1

𝐶𝐴
𝑛−1 =

1

𝐶𝐴0
𝑛−1 + (𝑛 − 1)𝑘𝑡  

to solve for 𝑛. This can be done through a non-linear least-squares analysis (a typical curve fitting toolbox 

would suffice).  

2.3.4 WORKING WITH PSEUDO ORDERS 
Sometimes it’s easier to assume an order and use pseudo rate constants. For instance, if we assume a rate 

law of the form 

rate = 𝑘rxn𝐶𝐴
𝑛 

then we can arbitrarily assume pseudo first order to make it 

rate = 𝑘1st𝐶𝐴 

where 

𝑘1st ≡ 𝑘rxn𝐶𝐴
𝑛−1 

We can linearize this to get 

ln(𝑘1st) = ln(𝑘rxn) + (𝑛 − 1) ln(𝐶𝐴) 

so that the slope of a ln(𝑘1𝑠𝑡) vs. ln(𝐶𝐴) curve would be equal to  𝑛 − 1. 
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3 WORKING WITH MULTIPLE ELEMENTARY STEPS 
3.1 GENERAL APPROACH 
When dealing with a reaction that has multiple elementary steps, the following procedure should be used 

in general: 

1) Postulate elementary steps (in particular, bond making and bond breaking events) 

2) Postulate a mechanism (determining fast vs. slow reactions as well as reversible vs. equilibrium 

reactions) 

3) Derive a closed-form rate law that describes the rate as a function of observables 

4) Test the rate law against available data and refine as necessary 

3.2 SYNTHESIS OF HBr 

3.2.1 ELEMENTARY STEPS 
Consider the reaction 

H2 + Br2 → HBr 

We will see that the rate expression for this reaction is not as simple as one would initially anticipate. For 

HBr, we can write the following possible elementary steps: 

Initiation – these are reactions that turn the reactants into radical species 

1. Br2 → Br· + Br· (denoted 𝑘1) 

2. H2 → H· + H· (denoted 𝑘4) 

Degenerate reactions – these reactions produce the same products as reactants and are important if 

isotopically labeled for determining kinetically relevant steps 

1. Br· + Br2 → Br2 + Br· 

2. H· + H2 → H2 + H· 

Propagation – these are reactions that produce at least as many radicals as are consumed to propagate the 

chain reaction 

1. Br· + H2  → HBr + H· (denoted 𝑘2) 

2. H· + Br2 → HBr + Br· (denoted 𝑘3) 

3. HBr + H· → Br· + H2 (denoted 𝑘−2) 

4. HBr + Br· → H· + Br2 (denote 𝑘−3) 

Termination – these are reactions that convert radical species into stable species 

1. Br· + H· → HBr (denoted 𝑘5) 

2. H· + H· → H2 (denoted 𝑘−4) 

3. Br· + Br· → Br2 (denoted 𝑘−1) 

3.2.2 RATE EXPRESSIONS 
With the reactions listed, we now write out the mass action kinetics.  

The overall balance for Br2 is 

𝑟Br2 =
𝑑[Br2]

dt
= −𝑘1[Br2] +

1

2
𝑘−1[Br ∙]

2 − 𝑘3[H ∙][Br2] + 𝑘3[HBr][Br ∙] 
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The overall balance for HBr is 

𝑟HBr =
𝑑[HBr]

dt
= 𝑘2[Br ∙][H2] + 𝑘3[H ∙][Br2] − 𝑘−2[HBr][H ∙] − 𝑘−3[HBr][Br ∙] + 𝑘5[Br ∙][H ∙] 

The overall balance for Br· is 

𝑟Br. =
𝑑[Br ∙]

dt
= 2𝑘1[Br2] − 𝑘2[Br ∙][H2] + 𝑘3[H ∙][Br2] + 𝑘−2[HBr][H ∙] − 𝑘−3[HBr][Br ∙]

− 𝑘5[Br ∙][H ∙] − 2𝑘−1[Br ∙]
2 

And we can do an analogous thing for the other species, but you get the idea. 

3.2.3 THE PSEUDO-STEADY STATE HYPOTHESIS 
Once the rate expressions are written, they can either be solved simultaneously without any simplification 

using a standard computational ODE-solving package, or algebraic simplifications can be made to make 

the expression more manageable. The most common assumption to make is the pseudo-steady-state 

hypothesis (PSSH), which states that the rate of appearance of a given species is essentially 0. This is most 

commonly applied to intermediate radical species, in this case Br· and H·. It is also important to check that 

for all chain reactions, the rate of initiation should equal the rate of termination if PSSH is applied. 

3.2.4 BOND DISSOCIATION ENERGIES 
Another simplification that can be made is neglecting small terms. To make this decision, it is easiest to 

look at bond dissociation energies (BDE) to predict the size of rate constants and relative concentrations. 

In this reaction, the BDE for H2 is 104.2 kcal/mol, the BDE for HBr is 87.5 kcal/mol, and the BDE for Br2 

is 46 kcal/mol. We then note that the BDE is proportional to the activation energy via the Evans-Polanyi 

relationship. The Evans-Polanyi relationship states that  

𝐸𝑎 = 𝐸0 + 𝛼Δ𝐻rxn 

where 𝐸0 is a constant for a given family of reactions and 𝛼 is the position of the transition state along the 

reaction coordinate (from 0 to 1).  

Therefore, based on the BDEs listed, we can assume that 𝑘1 ≫ 𝑘4 due to the low BDE of Br2 compared to 

H2. This BDE analysis means that [Br ∙] ≫ [H ∙]. As such, we will remove the 𝑘4 term. We also note that 

since there is so little [H ∙] in the system, 𝑟−4 ≈ 0. We will also consider reaction 3 only in the forward 

direction because of the relatively high BDE of HBr. Applying the PSSH and including these assumptions 

results in the following solution 

𝑟 =
𝑘[H2][Br2]

1
2

𝑘′ +
[HBr]
[Br2]

 

At low conversion (i.e. [HBr] ≈ 0), we see that the equation becomes first order in H2 and half order in Br2. 

Looking at limiting cases like this is helpful in accurately describing the kinetics. 

3.3 COMPLEX REACTIONS: CRACKING 

3.3.1 TERMINOLOGY 
Before getting into the mechanism for ethane cracking, it is important to go over some terminology used in 

this field of research. The two most common propagation steps in hydrocarbon pyrolysis and cracking are 

hydrogen abstraction and 𝛽-scission.  
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Hydrogen abstraction takes the general form of X· + H-Y → X-H + Y·. The radical that is produced from 

a hydrogen abstraction process is called a 𝜇 species. It is literally the abstraction of a hydrogen from an 

otherwise stable substrate.  

𝛽-scission takes the following general form: 

 

The radical that is produced from a 𝛽-scission reaction is called a 𝛽 species. 

3.3.2 MECHANISM AND MASS-ACTION KINETICS 
In this example, we will consider ethane cracking: 

C2H6 → C2H4 + H2 

Writing out the possible elementary steps: 

Initiation – in cracking, initiation occurs with a single molecule breaking down into two identical free 

radicals 

1) C2H6 
𝛼
→ 2 CH3· (𝐴 → 2 𝛽2) 

(note that CH3CH3 → C2H5· + H· has a significantly higher BDE) 

Propagation – The two main reactions are H-abstraction and 𝛽-scission  

1) CH3· + C2H6 
𝑘21
→  C2H5· + CH4 (𝛽2 + 𝐴 → 𝜇 + CH4) (H-abstraction) 

2) C2H5· 
𝑘1
→ C2H4 + H· (𝜇 → C2H4 + 𝛽1) (𝛽-scission) 

3) H· + C2H6 
𝑘11
→  H2 + C2H5· (𝛽1 + 𝐴 → H2 + 𝜇) (H-abstraction) 

Termination 

1) H· + C2H5· 
𝑘𝑡
→ C2H6 (𝛽1 + 𝜇 → 𝐴) 

2) 2 H· 
𝑘𝑡
′

→ H2 (2 𝛽1 → H2) 

3) 2 C2H5· 
𝑘𝑡
′′

→  C4H10 (2 𝜇 → C4H10) 

4) 2 CH3· 
𝑘𝑡
′′′

→  C2H6  (2 𝛽2 → 𝐴) 

5) CH3· + H· 
𝑘𝑡
𝐼𝑉

→  CH4 (𝛽2 + 𝛽1 → CH4)  

6) C2H5· + CH3· 
𝑘𝑡
𝑉

→  C3H8 (𝜇 + 𝛽2 → propane) 

A couple of things should be noted before continuing. Of course, other reactions can be written but they are 

not especially likely to occur. Also, it should be noted that the methyl C-H bond is one of the strongest 

aliphatic C-H bonds and therefore CH4 does not tend to form CH3· radicals very frequently. Finally, the 

propagation steps are conventionally written in the spontaneous (i.e. exothermic) direction in the literature. 
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Writing out the mass-action expressions: 

𝑟𝐴 =
𝑑𝐴

𝑑𝑡
= −𝛼𝐴 − 𝑘21𝛽2𝐴 − 𝑘11𝛽1𝐴 + 𝑘𝑡𝛽1𝜇 +

1

2
𝑘𝑡
′′′𝛽2

2 +⋯ 

𝑟𝛽1 =
𝑑𝛽1
𝑑𝑡

= 𝑘1𝜇 − 𝑘11𝛽1𝐴 − 𝑘𝑡𝛽1𝜇 − 2𝑘𝑡
′𝛽1
2 − 𝑘𝑡

𝐼𝑉𝛽1𝛽2 +⋯ 

𝑟𝛽2 =
𝑑𝛽2
𝑑𝑡

= 2𝛼𝐴 − 𝑘21𝛽2𝐴 − 2𝑘𝑡
′′′𝛽2

2 − 𝑘𝑡
𝐼𝑉𝛽1𝛽2 +⋯ 

𝑟𝜇 =
𝑑𝜇

𝑑𝑡
= 𝑘21𝐴𝛽2 − 𝑘1𝜇 + 𝑘11𝛽1𝐴 − 𝑘𝑡𝛽1𝜇 − 𝑘𝑡

𝑉𝜇 − 2𝑘𝑡
′′𝜇2 +⋯ 

3.3.3 SIMPLIFICATIONS BASED ON CONCENTRATIONS 
These expressions can be simplified by employing the PSSH on the radical species 𝛽1, 𝛽2, and 𝜇. We can 

also trim the expressions based on low rate coefficients and/or concentrations. The only low rate coefficient 

is in the initiation step, but you cannot delete the initiation term since then the reaction will never occur. 

However, we will remove any reactions of 𝛽2 with another radical based on experimental data that shows 

that no significant amounts of CH4, butane, propane, or other larger hydrocarbons are observed because 

CH4 is so stable that it is unlikely it will dissociate. 

3.3.4 SIMPLIFICATIONS BASED ON STATISTICAL TERMINATION 
Additional simplifications can be made based on the assumption of statistical termination. Take the 𝛽1 and 

𝜇 radicals as an example. A table can be made as follows showing the rate coefficients for each possible 

combination: 

 𝛽1 𝜇 

𝛽1 𝑘𝑡′ 𝑘𝑡 
𝜇 𝑘𝑡 𝑘𝑡′′ 

If we assume statistical termination, then the 𝑘𝑡 reaction should occur twice as likely as the 𝑘𝑡′ and 𝑘𝑡′′ 

reaction. As such, if we let 𝜔 be the rate constant for termination, we can state that 

𝜔 = 𝑘𝑡
′ = 𝑘𝑡

′′ =
1

2
𝑘𝑡 

3.3.5 SIMPLIFICATIONS BASED ON THE LONG-CHAIN APPROXIMATION 
The long-chain approximation can be made when the rate of propagation is significantly faster than the rate 

of initiation and/or termination. 

3.3.6 ETHANE CRACKING RATE LAW 
Combining all of the previous assumptions allows us to arrive at the rate law for ethane cracking: 

𝑟𝐴 =
𝑘11 (

𝛼𝐴
𝜔 )

1
2
𝐴

1 +
𝑘11𝐴
𝑘1

 

This rate law shows that at low partial pressure of 𝐴, the reaction is 3/2 order in 𝐴 whereas at high partial 

pressure of 𝐴 the reaction is 1/2 order in 𝐴.  
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In order to better understand what is going on in this mechanism, a diagram can be drawn like the one 

below. We see that there is a radical ratcheting cycle between the ethyl radical and hydrogen radical. This 

controls most of the kinetics of the process (hence the presence of 𝑘1 and 𝑘11). 

 

3.3.7 DETERMINING OBSERVED ACTIVATION ENERGIES 
At low partial pressure of 𝐴, we have 

𝑟𝐴 =
𝑘11𝛼

1
2𝐴
3
2

𝜔
1
2

 

To calculate the overall or observed activation energy, we can rewrite the expression as 

𝑟A ∼
(𝐴11 exp (−

𝐸11
𝑅𝑇
))(𝐴𝛼 exp (−

𝐸𝛼
𝑅𝑇
))

1
2

(𝐴𝜔 exp (−
𝐸𝜔
𝑅𝑇))

1
2

 

This shows us that the observed activation energy for this reaction is 

𝐸𝑜𝑏𝑠 = 𝐸11 +
1

2
𝐸𝛼 −

1

2
𝐸𝜔 

This approach can be used anytime rate coefficients are multiplied and/or divided together. If rate 

coefficients are added or subtracted, the only way to find an observed activation energy is to break it into 

different regimes where the addition/subtraction disappears. 

3.3.8 GENERAL OVERVIEW OF SIMPLIFICATION PROCESS 
1. Postulate steps 

2. Write out mass-action kinetics 

3. Apply PSSH on intermediate radicals 

a. This, in turn, sets the rate of initiation equal to the rate of termination 

4. Use BDEs and/or experimental data about which species are not observed to further reduce the 

mechanism 

5. If applicable, apply the long-chain approximation such that the rate of propagation is much greater 

than the rate of initiation and termination 

6. The goal is to write the rate in change of reactant (or product) as a function of only experimentally 

observable (i.e. stable) species and the corresponding rate coefficients 
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3.3.9 COMPLEX REACTIONS: ADDITIVES 
Reactions can be controlled not only by changing pressure and temperature but also by introducing 

additives. These may include things such as initiators for polymerization, reactive species for the stable 

operation of combustion engines, anti-oxidants (to prevent oxidation), vitamins (i.e. radical cofactors), and 

so on. In these cases, the ratio that the rate has change is called the enhancement factor. A value greater 

than 1 means the reaction is enhanced whereas a value less than 1 means the reaction is impeded. 

One common class of additives is radical initiators. These are species that can produce radical species under 

mild conditions and therefore promote radical reactions. They generally possess weak bonds (i.e. bonds 

with a small BDE). Organic peroxides (e.g. benzoyl peroxide) are therefore oftentimes used as radical 

initiators since the BDE of the O-O bond in the peroxides is very weak, and the resulting oxyl radicals are 

unstable and preferentially abstract hydrogen. 

3.4 COMPLEX REACTIONS: RADICAL CHAIN AUTOXIDATION 
Assume we have the following autoxidation mechanism: 

ROOH 
𝑘𝑑
→  RO· + HO· 

RO· + RH 
𝑘1
→ ROH + R· 

OH· + RH 
𝑘2
→ H2O + R· 

R· + O2 
𝑘3
→ ROO· 

ROO· + RH 
𝑘4
→ ROOH + R· 

ROO· + ROO· 
𝑘𝑡
→ ROH + R=O + O2 

Mass action kinetics and PSSH 

𝑑[RH]

𝑑𝑡
= −𝑘1[RO ∙][RH] − 𝑘2[OH ∙][RH] + 𝑘4[ROO ∙][RH] 

𝑑[RO ∙]

𝑑𝑡
= 0 = −𝑘1[RO ∙][RH] + 𝑘𝑑[ROOH] 

𝑑[OH ∙]

𝑑𝑡
= 0 = −𝑘2[OH ∙][RH] + 𝑘𝑑[ROOH] 

𝑑[R ∙]

𝑑𝑡
= 0 = 𝑘1[RO ∙][RH] + 𝑘2[OH][RH] − 𝑘3[R ∙][O2] + 𝑘4[ROO ∙][RH] 

𝑑[ROO ∙]

𝑑𝑡
= 0 = 𝑘3[R ∙][O2] − 𝑘4[ROO ∙][RH] − 2𝑘𝑡[ROO ∙]

2 

Add together 𝑑[R ∙]/𝑑𝑡 and 𝑑[ROO ∙]/𝑑𝑡 to get 

0 = 𝑘1[RO ∙][RH] + 𝑘2[OH][RH] − 2𝑘𝑡[ROO ∙]
2 

We note that from 𝑑[RO ∙]/𝑑𝑡 

𝑘1[RO ∙][RH] = 𝑘𝑑[ROOH] 
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We note that from 𝑑[OH ∙]/𝑑𝑡 

𝑘2[OH ∙][RH] = 𝑘𝑑[ROOH] 

so  

0 = 2𝑘𝑑[ROOH] − 2𝑘𝑡[ROO ∙]
2 

This shows that the rate of initiation equals the rate of termination, as it should from the PSSH. We can 

then use this to rewrite the rate in change of RH as 

𝑑[RH]

𝑑𝑡
= 2𝑘𝑑[ROOH] + 𝑘4[RH] (

𝑘𝑑
𝑘𝑡
[ROOH])

1
2
 

We can combine rate coefficients to rewrite this as 

𝑑[RH]

𝑑𝑡
= 2𝑘𝑑[ROOH] + 𝑘

′[RH][ROOH]
1
2 

If we know in advance that we can apply the long-chain approximation, then the left-hand term becomes 

negligible. To make an educated decision, we should look at BDEs. They are as follows: 

ROO-H, 366 kJ/mol | RO-H, 441 kJ/mol | HO-H, 497 kJ/mol | R-H, 416 kJ/mol 

We can now calculate the Δ𝐻rxn associated with reaction 4.  

Δ𝐻rxn,4 = BDEbonds broken − BDEbonds formed = BDERH − BDEROOH ≈ 50 kJ/mol 

From this, we can see that 𝑘4 is likely a small quantity, and so the long-chain approximation probably isn’t 

best to use here.  

If we want to find the selectivity of ROH versus R=O, we note that ROH is produced in both reaction 1 and 

the termination step while R=O only is produced in the termination step. The selectivity is then 

𝑑[ROH]
𝑑𝑡

𝑑[R = O]
𝑑𝑡

=
step 1 + step 𝑡

step t
=
𝑘1[RO ∙][RH] + 𝑘𝑡[ROO ∙]

2

𝑘𝑡[ROO ∙]
2

=
𝑘𝑑[ROOH]

𝑘𝑡[ROO ∙]
2
+ 1 = 2 
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4 CONSEQUENCES OF CHEMICAL EQUILIBRIA 
4.1 RELATIONSHIPS BETWEEN THERMODYNAMICS AND EQUILIBRIUM 

4.1.1 TEMPERATURE-DEPENDENCE OF THERMODYNAMIC QUANTITIES 
In this section, we will make great use of Δ𝐺rxn

∘  and Δ𝐻rxn
∘ . The superscript ∘ indicates a standard reference 

state, most typically 1 bar when dealing with gases. The standard state does not refer to a temperature, 

although most tabulated values are at 298.15 K. Since both Gibbs free energy and enthalpy are functions of 

temperature, this can complicate equilibrium calculations because tabulated quantities are most often 

reported at temperatures other than the reaction conditions (and oftentimes the temperature of the system 

changes throughout the course of a given reaction).  

To find the Δ𝐻rxn
∘  at a particular temperature 𝑇, one can use the following relationship: 

Δ𝐻rxn
∘ (𝑇) = Δ𝐻rxn,𝑇𝑟𝑒𝑓

∘ + ∫ Δ𝐶𝑃
∘(𝑇)

𝑇

𝑇𝑟𝑒𝑓

𝑑𝑇 

The Δ𝐻rxn,𝑇𝑟𝑒𝑓
∘  term refers to the standard enthalpy of reaction at a tabulated reference temperature. This is 

typically known from the heats of formation of each species at the same reference temperature (Δ𝐻𝑓𝑖,𝑇𝑟𝑒𝑓
∘ ). 

The relationship is 

Δ𝐻rxn,𝑇𝑟𝑒𝑓
∘ =∑𝜈𝑖Δ𝐻𝑓𝑖,𝑇𝑟𝑒𝑓

∘

𝑖

 

For species in the most stable state (e.g. monatomic carbon or diatomic oxygen), the enthalpies of formation 

are assigned to be zero by convention. 

The Δ𝐶𝑃
∘  term is change heat capacity term weighted by stoichiometric ratios and is also a function of 

temperature. This is 

Δ𝐶𝑃
∘(𝑇) =∑𝜈𝑖𝐶𝑃,𝑖

∘

𝑖

 

The value of the heat capacity for a given species (𝐶𝑃,𝑖
∘ ) can be found in reference tables as well. It is often 

reported as a power series of temperature with empirically derived coefficients. 

An analogous expression can be written for the standard Gibbs free energy change of reaction at a reference 

temperature: 

Δ𝐺rxn,𝑇𝑟𝑒𝑓
∘ =∑𝜈𝑖Δ𝐺𝑓𝑖,𝑇𝑟𝑒𝑓

∘

𝑖

 

4.2 THE EQUILIBRIUM CONSTANT 

4.2.1 ACTIVITY EQUILIBRIUM CONSTANT 
The equilibrium constant, using activities, is defined as  

𝐾𝑎 =∏𝑎𝑖
𝜈𝑖

𝑖

 

where 𝑎𝑖 is the activity of a given species.  
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The activity equilibrium constant can be related to Δ𝐺 by 

𝐾𝑎 = 𝑒
−
Δ𝐺rxn

∘

𝑅𝑇  

However, it is critical to note that since Δ𝐺rxn
∘  is typically found from Δ𝐺𝑓,𝑖

∘  at a reference temperature, 𝑇ref, 

then the resulting 𝐾𝑎 is only valid at 𝑇ref: 

𝐾𝑎,𝑇𝑟𝑒𝑓 = 𝑒
−
𝛥𝐺rxn,𝑇𝑟𝑒𝑓

∘

𝑅𝑇𝑟𝑒𝑓  

In order to determine the 𝐾𝑎 at a temperature other than the reference temperature, one must use the 

following relationship 

ln (
𝐾𝑎,𝑇2
𝐾𝑎,𝑇1

) = ∫
Δ𝐻rxn

∘ (𝑇)

𝑅𝑇2

𝑇2

𝑇1

𝑑𝑇 

where 𝑇1 typically is 𝑇ref. Since Δ𝐻rxn
∘  is a function of temperature, this must usually be accounted for 

using the aforementioned temperature-dependence relationships. However, if this temperature effect can be 

ignored, then the equation simplifies to 

ln (
𝐾𝑎,𝑇2
𝐾𝑎,𝑇1

) = −
Δ𝐻rxn

∘

𝑅
(
1

𝑇2
−
1

𝑇1
) 

4.2.2 ACTIVITIES FOR GASES 
The most general way to compute the activity of an arbitrary mixture of gases is by using fugacities: 

𝑎𝑖 =
𝑓𝑖
𝑃ref

= 𝛾𝑖
𝑃𝑖
𝑃ref

= 𝜑𝑖𝑦𝑖
𝑃

𝑃ref
 

where 𝜑𝑖 is the dimensionless fugacity coefficient and 𝛾𝑖 is the activity coefficient. For ideal species, 𝜑𝑖 =

𝛾𝑖 = 1. Therefore, for a gas mix at low enough pressure that the system can be assumed to be ideal, we can 

simplify this expression by saying 

𝑎𝑖 = 𝑦𝑖
𝑃

𝑃ref
 

where 𝑃 is the total pressure of the system.1 This then means that 

𝐾𝑎 = (
𝑃

𝑃ref
)
𝛿

∏𝑦𝑖
𝜈𝑖

𝑖

 

where 𝛿 is the change in (stoichiometric) moles. 

4.2.3 ACTIVITIES FOR LIQUIDS 
Activities for liquids can be written as  

𝑎𝑖 = 𝛾𝑖𝑥𝑖 

                                                      
1 Since partial pressure is just 𝑃𝑖 = 𝑃𝑦𝑖, we can optionally rewrite activity as 𝑎𝑖 = 𝑃𝑖/𝑃ref 
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where 𝛾𝑖 is specifically the Raoult’s law activity coefficient and indicates ideal behavior according to 

Raoult’s law. As 𝑥𝑖 → 1, the value of the activity coefficient also approaches 1. As 𝑥𝑖 → 0, the activity 

coefficient approaches an infinitely dilute case denoted 𝛾𝑖
∞ and can be found by divided the Henry’s law 

constant by the saturation vapor pressure. The value of 𝛾𝑖
∞ is large for poorly soluble, low volatility species. 

If 𝛾product
∞ > 𝛾reactants

∞  then there is an equilibrium shift toward products. 

Dilute solutions typically follow Henry’s law instead of Raoult’s law, and it is more conventional to use 

concentration. As such, 

𝑎𝑖 = 𝛾𝑖
𝐶𝑖
𝐶ref

 

where 𝐶𝑖 refers to the concentration of a species 𝑖, 𝐶ref is typically 1 M. For an ideal liquid mixture, the 

activity coefficient approaches 1 and 

𝑎𝑖 =
𝐶𝑖
𝐶ref

 

Therefore, for ideal solutions 

𝐾𝑎 = (
1

𝐶ref
)
𝛿

∏𝐶𝑖
𝜈𝑖

𝑖

 

4.2.4 RELATIONSHIP BETWEEN VARIOUS EQUILIBRIUM CONSTANTS 
Oftentimes, equilibrium constants in terms of pressure, concentration, and mole fraction are used. These 

are as follows, respectively: 

𝐾𝑃 =∏𝑃𝑖
𝜈𝑖

𝑖

 

𝐾𝐶 =∏𝐶𝑖
𝜈𝑖

𝑖

 

𝐾𝑦 =∏𝑦𝑖
𝜈𝑖

𝑖

 

For an ideal gas, the following relationships hold: 

𝐾𝑎 = (
1

𝑃ref
)
𝛿

𝐾𝑃 = (
𝑃

𝑃ref
)
𝛿

𝐾𝑦 

𝐾𝑃 = 𝐾𝐶(𝑅𝑇)
𝛿 

For an ideal liquid mixture, we have that 

𝐾𝑎 = (
1

𝐶ref
)
𝛿

𝐾𝐶 

We therefore see that for ideal solutions, 𝐾𝑎 ≈ 𝐾𝑃 ≈ 𝐾𝐶 (taking into account reference terms to take care 

of units). 
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4.3 ENZYME KINETICS 

4.3.1 DERIVATION OF THE MICHAELIS-MENTEN EQUATION 
Catalysts are defined as agents that decrease the activation energy of a reaction without being consumed. 

Therefore, at a given temperature, the reaction rate increases in the presence of a catalyst. 

We will use the following nomenclature when discussing both physical and biological catalysts: E (free 

catalyst), A (reactant), P (product), and all other species (e.g. X, Y) are catalytic intermediates (e.g. an 

enzyme-substrate complex).  

Let us consider the reaction mechanism A + E ⟷ X → P + E, which I will enumerate as follows 

A + E 
𝑘1
→ X     X 

𝑘2
→ A + E 

X 
𝑘3
→ E + P 

The goal is to find the rate of appearance of P in terms of observable quantities and constants. If we apply 

PSSH to our intermediate X, we get 

𝑑X

𝑑𝑡
= 0 = 𝑘1[𝐴][𝐸] − 𝑘2[X] − 𝑘3[X] 

Applying a mass (i.e. site) balance to the catalyst yields 

𝐸𝑇 = [E] + [X] 

where 𝐸𝑇 is the total amount of catalyst. It is ideal to write [X] in terms of 𝐸𝑇 instead of [E] because 𝐸𝑇 is 

a constant with time. Therefore, 

[X] =
𝑘1[𝐴]𝐸𝑇

𝑘1[A] + 𝑘2 + 𝑘3
 

We can write the rate in change of product as  

𝑑[P]

𝑑𝑡
= 𝑘3[X] =

𝑘1𝑘3[A]𝐸𝑇
𝑘1[A] + 𝑘2 + 𝑘3

 

Dividing by 𝑘1 yields 

𝑑[P]

𝑑𝑡
=

𝑘3[A]𝐸𝑇

[A] +
𝑘2 + 𝑘3
𝑘1

 

We say that 𝑉max ≡ 𝑘3𝐸𝑇 and 𝐾M ≡ (𝑘2 + 𝑘3)/𝑘1 to get the typical form of the Michaelis-Menten equation 

𝑑[P]

𝑑𝑡
=
𝑉max[A]

[A] + 𝐾M
 

The value of 𝐾M is the concentration of A at which the rate is half of its maximum. The value of 𝑉max is the 

maximum rate at [A] ≫ 𝐾M. From this equation, it is clear that at [A] ≪ 𝐾M, the rate appears to be first 

order in A. At [A] ≫ K𝑀, the rate is pseudo zeroth order in A (and therefore independent of A). At all [A], 

the rate is proportional to the total enzyme concentration.  
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4.3.2 PLOTTING MICHAELIS-MENTEN DATA 
Oftentimes, a linearized plot is desired. This can be done using a Lineweaver-Burk plot, where the inverse 

of the rate is plotted against the inverse concentration of the substrate. This is merely a linearization of the 

Michaelis-Menten equation to 

1

𝑟𝑃
=
𝐾M
𝑉max

1

[A]
+

1

𝑉max
 

This then leads to the following linearized for (here, the substrate is denoted S) 

 

The Eadie-Hofstee plot is another way to linearize the Michaelis-Menten equation, which uses the following 

equation 

𝑟P = −𝐾M
𝑟P
[𝐴]

+ 𝑉max 

and has a plot with characteristics shown below 

Since the Lineweaver-Burke plot uses inverse values, it unevenly weights data points in concentration and 

reaction rate whereas Eadie-Hofstee plots do not. However, the Eadie-Hofstee plot’s abscissa and ordinate 

are dependent on the reaction rate, and therefore any experimental error will be present in both axes. Any 

uncertainty also propagates unevenly and becomes larger over the abscissa, giving weight to smaller values 

of 𝑟P/[A]. 

 

In a batch reactor, one often wants to plot [A] as a function of time. To obtain this, the Michaelis-Menten 

equation must be integrated. Doing so yields  

𝐾M ln (
𝐶𝐴0
𝐶𝐴
) + (𝐶𝐴0 − 𝐶𝐴) = 𝑘3𝐸T𝑡 
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Plotting concentration as a function of time yields a function that clearly changes slope as it switches from 

first order to zeroth order regimes 

 

The equation can also be linearized in the following form 

𝐶𝐴0 − 𝐶𝐴

ln (
𝐶𝐴0
𝐶𝐴
)
= 𝑉max(

𝑡

ln (
𝐶𝐴0
𝐶𝐴
)
) − 𝐾M 

4.3.3 REVERSIBLE PRODUCT BINDING 
Instead of irreversible product binding, we will now consider reversible product binding given by A + E 

⟷ X ⟷ P + E, which I will enumerate as follows  

A + E 
𝑘1
→ X     X 

𝑘2
→ A + E 

X 
𝑘3
→ P + E     P + E 

𝑘4
→ X 

Applying PSSH on species X yields 

0 = (𝑘1[A] + 𝑘4[P])[𝐸] − (𝑘2 + 𝑘3)[X] = 0 

The site balance can be given by  

𝐸𝑇 = [X] + [E] 

Substituting in for [E] allows us to write the following (I will drop the brackets for brevity now) 

𝑋 =
(𝑘1𝐴 + 𝑘4𝑃)𝐸𝑇

𝑘1𝐴 + 𝑘4𝑃 + 𝑘2 + 𝑘3
 

We can write the mass-action equation for the product as 

𝑑P

𝑑𝑡
= 𝑘3X − 𝑘4PE 

Substituting in for [X] and making use of stoichiometry (i.e. 𝑃 = 𝐴0 − 𝐴) yields 

𝑑𝑃

𝑑𝑡
= 𝐸𝑇 (

(𝑘1 + 𝑘3 + 𝑘2𝑘4)𝐴 − 𝑘2𝑘4𝐴0
(𝑘1 − 𝑘4)𝐴 + 𝑘2 + 𝑘3 + 𝑘4𝐴0

) 

In the case of no reversible binding, at 𝑡 → ∞ we will have [A] → 0. However, for reversible binding, at 

𝑡 → ∞ we will have [A] approach some constant non-zero equilibrium value.  
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4.3.4 COMPETITIVE INHIBITION 
Competitive inhibition occurs when there are two competing substrates for the same enzyme. This can be 

generally given by the following two equations: A + E ↔ X → P + E and B + E ↔ Y. I will enumerate these 

reactions as the same as before but now with a 𝑘4 and 𝑘5 for the new set of reactions. 

The site balance in this case is now given by  

𝐸𝑇 = E + X + Y 

The resulting rate equation can be found to be 

𝑑𝑃

𝑑𝑡
=

𝑘3𝐸𝑇𝐴

𝐾M(1 + 𝑁𝐵0) + 𝐴
 

where  

𝐾M ≡
𝑘2 + 𝑘3
𝑘1

 

and 

𝑁 ≡
𝑘4
𝑘5

 

4.3.5 NON-COMPETITIVE INHIBITION 
Non-competitive inhibition occurs when a substrate, B, can bind to a remote site on an enzyme that prevents 

A from binding or leaving the site that converts A to P. This is given by the following series of three 

reactions: A + E ↔ X → P + E and B + E ↔ Y and B + X ↔ Z. As can be seen from this set of equations, 

B can bind to either the free enzyme or the bound enzyme, both of which prevent the formation of P. We 

will enumerate these reactions the same as before but with 𝑘6 and 𝑘7 for the new set of reactions. 

The site balance can be written as 

ET = E + X + Y + Z 

The rate expression then becomes 

𝑑P

𝑑𝑡
=

𝑘3𝐸𝑇𝐴

𝐾M + 𝐴 + 𝑁𝐵0𝐾M + 𝐿𝐴𝐵0
=

(
𝑘3

1 + 𝐿𝐵0
)𝐸𝑇𝐴

𝐾M (
1 + 𝑁𝐵0
1 + 𝐿𝐵0

) + 𝐴
 

where the new constant 𝐿 is given by 

𝐿 ≡
𝑘6
𝑘7
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5 REACTION NETWORKS 
5.1 INTRODUCTION TO REACTION NETWORKS 
Previously, we have discussed rate laws for a single reaction of the type 𝐴 → 𝐵. However, oftentimes we 

have to deal with a complex reaction network, where there are many products produced from a reactant (or 

multiple reactants), but little information is known a priori about how the products are actually produced. 

Specifically, the reaction topology is often desired. In this section, we will refer to the “rank” of a species 

as the numerical order in which a product appears. If it comes first, it will have rank 1 and be called primary; 

if second, it will have rank 2 and be called secondary, and so on. This is distinct from the order of that 

species, which we will reserve for the value of 𝑛 in rate = 𝑘𝐶𝐴
𝑛 (i.e. the dependence of rate on 

concentration).  

We will define yield of a species 𝑖 (compared to a reactant 𝐴) as 

𝑌𝑖 ≡
𝑁𝑖 −𝑁𝑖0
𝑁𝐴0

 

We will define the conversion of a reactant 𝐴 as  

𝑋𝐴 ≡ 1 −
𝑁𝐴
𝑁𝐴0

 

We will define selectivity of a species 𝑖 (compared to a reactant 𝐴) as 

𝑆𝑖 ≡
𝑌𝑖
𝑋𝐴
=
𝑁𝑖 −𝑁𝑖0
𝑁𝐴0 −𝑁𝐴

 

The differential selectivity will therefore be defined as  

𝑆𝑑𝑖 ≡
𝜕𝑌𝑖
𝜕𝑋𝐴

 

5.2 DELPLOTS 
To determine the rank of a reaction product, the method of delplots can be used. The first-rank delplot is 

used to distinguish primary products from non-primary products. Higher rank delplots allow for the 

discernment of products that are secondary, tertiary, and so on. The following notation will be used to 

describe delplots: PA
1 . Here, the left-hand superscript is a number representing the rank of the delplot (in 

this case 1), P represents a product P, and the subscript A means that it is based on the conversion of species 

A. 

The first-rank delplot is a plot of selectivity versus conversion. In other words, it is a plot of 𝑌𝑃/𝑋𝐴 vs. 𝑋𝐴. 

For each product P, the delplot is extrapolated to 𝑋𝐴 → 0 (i.e. when 𝑡 → 0 or 𝜏 → 0). This 𝑦-intercept, 

denoted as PA
1 , can be evaluated as 

PA
1 = lim

𝜏→0

𝑃/𝐴0 

(𝐴0 − 𝐴)/𝐴0
= lim
𝜏→0

𝑃

𝐴0 − 𝐴
 

This can be evaluated algebraically from given expressions of the concentrations of each product as a 

function of time or numerically from the actual plots of selectivity versus conversion.  
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If a finite 𝑦-intercept is found in the first-rank delplot, then the product is primary because the initial rate 

of formation of a primary product is always finite. If the 𝑦-intercept is zero, then the product is non-primary 

(i.e. the rank is greater than 1) because the initial rate of a non-primary product is always zero (i.e. it lags). 

Higher rank delplots allows for the sorting of products of rank greater than 1. The second-rank delplot 

consists of a plot of 𝑌𝑃/𝑋𝐴
2 vs. 𝑋𝐴. The 𝑦-intercept of the second-rank delplot for a product P is  

PA
2 = lim

𝜏→0

𝑃/𝐴0 

(
𝐴0 − 𝐴
𝐴0

)
2 = lim𝜏→0

𝐴0𝑃

(𝐴0 − 𝐴)
2
 

If a finite intercept is found, the product is secondary. If a zero intercept is found, the product’s rank is 

greater than secondary. If a divergence is found as 𝜏 → 0 (i.e. no y-intercept), the product’s rank is primary. 

This can be summarized generally. The delplot of rank 𝑚 is a plot of 𝑌𝑃/(𝑋𝐴)
𝑚 vs. 𝑋𝐴. The 𝑦-intercept can 

be found via 

PA
𝑚 = lim

𝜏→0

𝑃/𝐴0 

(
𝐴0 − 𝐴
𝐴0

)
𝑟 

The following general procedure can then be employed, which has been extended to include orders other 

than first order. In the table, 𝑟 is the rank of the species and 𝑚 is the rank of the plot. Note that it is often 

too difficult to notice changes from 0 intercepts to finite intercepts for 𝑛 > 1 when the rank is high. If you 

encounter a species that has a 0 intercept no matter the rank of the Delplot, it is likely either 𝑛 = 1 and a 

really high rank species (perhaps it is produced from intermediate species you are not aware of) or 𝑛 > 1 

and some rank at the end of the chain. The specific order can often be determined by looking at 

concentration versus time plots. In general, delplots are limited at ranks greater than about 2 or 3 due to the 

large propagation of error that occurs.  

Order Rank = 1 Rank > 1 

𝑛 = 1 PA
1 = finite (otherwise 0) PA

𝑚 = 0 for 𝑟 > 𝑚 

  PA
𝑚 = finite for 𝑟 = 𝑚 

  PA
𝑚 = diverges for 𝑟 < 𝑚 

𝑛 < 1 PA
1 = finite (otherwise 0) PA

𝑚 = 0 for 𝑟 > 𝑚 

  PA
𝑚 = diverges for 𝑟 = 𝑚 

𝑛 > 1  

 
PA
1 = finite (otherwise 0) PA

𝑚 = 0 for 𝑟 ≥ 𝑚 

PA
𝑚 = finite for 𝑟 < 𝑚 

 

 

 

 

 

 

  



KINETIC THEORY | 27 
 

6 KINETIC THEORY 
6.1 COLLISION THEORY 

6.1.1 DISTRIBUTION LAWS 
Collision theory can be used to estimate kinetic parameters from first-principles. It assumes that the 

molecules are hard spheres and react by collision with one another. It also assumes that the attractive forces 

between the species are negligible.  

Although it will not be derived here, it can be found that the probability distribution for a given speed, 𝑐, is 

given by 

𝑃(𝑐) 𝑑𝑐 =
4𝑐2

𝛼3√𝜋
exp(−

𝑐2

𝛼2
)𝑑𝑐 

where 𝛼 is the most probable speed can be found via 

𝛼 = √
2𝑘𝐵𝑇

𝑚
  

The distribution of kinetic energy can be derived from this expression and can be given by 

𝑃(𝐸) 𝑑𝐸 =
4

𝛼3
√
2𝐸

𝜋𝑚3
exp (−

2𝐸

𝑚𝛼2
)𝑑𝐸 

6.1.2 COLLISION FREQUENCIES 
With the hard-sphere assumption and the distribution laws established, we can write an expression for the 

number of collisions experienced per molecule per second. First, let us define the reaction cross section as  

𝜎𝐴𝐵 =
1

2
(𝜎𝐴 + 𝜎𝐵) 

The reaction cross section 𝜎𝐴𝐵 represents the distance between the centers of species 𝐴 and 𝐵 below which 

collisions can occur. If we consider the trajectory of a single molecule 𝐴 through a stationary matrix of 𝐵 

moving at a fixed speed, then the collision frequency is then given by  

𝑍𝐴𝐵 = 𝜋𝜎𝐴𝐵
2 𝑐𝐴𝑛𝐵 

where 𝑐𝐴 is the speed of species 𝐴 and 𝑛𝐵 is the number density of 𝐵. The average speed from the Maxwell 

distribution can be given as 

𝑐avg = √
8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵
 

where 𝜇𝐴𝐵 is the reduced mass of 𝐴𝐵, given by 

𝜇𝐴𝐵 ≡
𝑚𝐴𝑚𝐵
𝑚𝐴 +𝑚𝐵
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For the case of identical molecules, the reduced mass simplifies to half the mass of the molecule. This 

relative speed is useful because now we can write the collision frequency of 𝐴 moving through a matrix of 

𝐵 molecules when 𝐴 has a Maxwell distribution of speeds 

𝑍𝐴𝐵 = 𝜋𝜎𝐴𝐵
2 𝑛𝐵√

8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵
 

If both molecules 𝐴 and 𝐵 have Maxwellian distributions, then  

𝑍𝐴𝐵 = 𝜋𝜎𝐴𝐵
2 𝑛𝐴𝑛𝐵√

8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵
 

If there is only one molecular species 𝐴 then the collision frequency is given by 

𝑍𝐴𝐴 = 4𝜋𝜎𝐴𝐴
2 𝑛𝐴

2√
𝑘𝐵𝑇

𝜋𝑚𝐴
 

6.1.3 RATE CONSTANTS 
Naively, one could say that since 𝑍 is a collision frequency, then it is a rate and then 𝑍𝐴𝐵 = 𝑟𝐴 = −𝑘𝑛𝐴𝑛𝐵 

for a bimolecular reaction of 𝐴 and 𝐵. This would imply that 𝑘 = 𝜋𝜎𝐴𝐵
2 √

8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵
. While this is reasonable for 

the pure collision of two species, it not reflective of the kinetics of reactions because there is no exponential 

dependence on temperature. The missing link here is that molecules only react if they collide with sufficient 

energy transfer. We therefore must define a threshold energy, 𝜂∗, above which reactions can occur. We then 

find that the reactive collision number is 

𝑍 = 𝑝𝜋𝜎𝐴𝐵
2 √

8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵
exp (−

𝜂∗

𝑘𝐵𝑇
)𝑛𝐴𝑛𝐵 

Here, 𝑝 is a steric factor which is effectively a correction factor (unless otherwise defined, it can be taken 

as a value of 1). For 𝑟𝐴 = −𝑘𝑛𝐴𝑛𝐵, we then have that  

𝑘 = 𝑝𝜋𝜎𝐴𝐵
2 √

8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵
exp (−

𝜂∗

𝑘𝐵𝑇
) 

From the above expression, we see that there is an exponential temperature dependence as would be 

expected from Arrhenius’ law, but there is also a √𝑇 dependence in what would be analogous to the pre-

exponential factor, which is otherwise assumed to be independent of temperature in the Arrhenius equation. 

The collision theory equation is fairly accurate for low values of 𝜂∗, such as very exothermic elementary 

steps like radical recombination. 

6.2 LINDEMANN THEORY 
The prior equation for 𝑘 from collision theory is not suitable for unimolecular reactions because it assumes 

that bonds are formed from the collision of two molecules and does not capture decomposition that isn’t 

from this relative kinetic energy of translational motion. We will present here a simplified version of 

Lindemann theory in which collisions are instantaneous. Let us assume a reaction mechanism of 
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𝐴 + 𝐴
𝑘1,𝑘−1
↔   𝐴 + 𝐴∗ 

𝐴∗
𝑘2,𝑘−2
↔   products 

If we apply PSSH on the activated intermediate, we get 

𝑑𝐶𝐴∗

𝑑𝑡
= 0 = 𝑘1𝐶𝐴

2 − 𝑘−1𝐶𝐴𝐶𝐴∗ − 𝑘2𝐶𝐴∗ 

Solving for 𝐶𝐴∗ yields 

𝐶𝐴∗ =
𝑘1𝐶𝐴

2

𝑘2 + 𝑘−1𝐶𝐴
 

The rate of product formation is then given by  

𝑟 = 𝑘2𝐶𝐴∗ =
𝑘1𝑘2𝐶𝐴

2

𝑘2 + 𝑘−1𝐶𝐴
 

At high pressures (i.e. high concentrations), we get 

𝑟 ≈
𝑘1𝑘2
𝑘−1

𝐶𝐴 = 𝑘∞𝐶𝐴 

where 𝑘∞ is the observable rate constant. At low pressures (i.e. low concentrations) we get 

𝑟 ≈ 𝑘1𝐶𝐴
2 

We know that collision theory works very well for radical decomposition, so we can assume that 𝑘−1 can 

be estimated well from collision theory and is therefore 

𝑘−1 = 𝜋𝜎𝐴𝐴
2 𝑛𝐴

2√
8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵
 

where the exponential energy term can be ignored because 𝜂∗ ≈ 0 for this reaction. The probability 

distribution function of energies in this system can also be found to be 

𝑓(𝐸∗) =
exp (−

𝐸∗

𝑘𝐵𝑇
)(
𝐸∗

𝑘𝐵𝑇
)
𝑛−1

(𝑛 − 1)! 
 

where 𝑛 is the number of degrees of vibrational freedom. For a nonlinear polyatomic molecule, it is given 

by 𝑛 = 3𝑁 − 6 and a linear molecule it is given by 𝑛 = 3𝑁 − 5 where 𝑁 is the number of atoms in the 

molecule. We can say that the equilibrium constant for the first reaction is given by  

𝐾1 =
𝑘1
𝑘−1

=
𝐶𝐴
∗

𝐶𝐴
 

The term 𝐶𝐴
∗/𝐶𝐴 is essentially the fraction of the total number of molecules with energy greater than 𝐸∗, so 

𝑘1
𝑘−1

= 𝑓(𝐸∗) 
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We then have that 

𝑘1 = 𝜋𝜎𝐴𝐴
2 𝑛𝐴

2√
8𝑘𝐵𝑇

𝜋𝜇𝐴𝐵

exp (−
𝐸∗

𝑘𝐵𝑇
) (
𝐸∗

𝑘𝐵𝑇
)
𝑛−1

(𝑛 − 1)! 
 

If we look back at the rate constant for the high concentration case,  

𝑘∞ =
𝑘1𝑘2
𝑘−1

= 𝑘2 𝑓(𝐸) 

If we want to know what the observable rate constant is, we need to find 𝑘2. The value of 𝑘2 is the 

probability that the product decays and is given by 

𝑘2 = 𝜈̅ (1 −
𝐸∗

𝑛𝑘𝐵𝑇
)
1−𝑛

 

After some math that is omitted here for brevity, we can arrive at the following expression for the observable 

rate constant in the limit of high 𝐸∗, 

𝑘∞ = 𝜈̅ exp (−
𝐸∗

𝑘𝐵𝑇
) 

which has the familiar form of the Arrhenius expression (𝜈̅ is an intrinsic frequency factor and thus has the 

units of the pre-exponential factor in the Arrhenius equation). We then see that Lindemann theory succeeds 

where collision theory fails – in the high 𝐸∗ limit. 

6.3 TRANSITION STATE THEORY 

6.3.1 PARTITION FUNCTIONS 
Transition state theory (TST) treats the activated intermediate as a real species which means that we can 

use thermodynamics to estimate its properties. Let us consider the follow equilibrium of the transition state 

complex 

𝐴𝐵 + 𝐶
𝐾𝐶
‡

↔ (𝐴𝐵𝐶)‡ →𝐴 + 𝐵𝐶 

We then have that  

𝐾𝐶
‡ =

[𝐴𝐵𝐶‡]

[𝐴𝐵][𝐶]
 

This can be determined from statistical mechanics via the following expression2 

𝐾𝐶
‡ =

𝑁𝐴
𝑛−1𝑄‡

𝑄𝐴𝐵𝑄𝐶
exp(−

𝛥𝑈‡

𝑅𝑇
) 

where 𝑛 is the molecularity. The Δ𝑈‡ can only be obtained from calculations (typically the difference of 

zero-point energies of reactants and the transition state), the value of 𝑛 is the molecularity of the reaction, 

                                                      

2 More generally, for the reaction 𝑎𝐴 + 𝑏𝐵 ↔ 𝑐𝐶 + 𝑑𝐷, we have that 𝐾𝐶 = 𝑁𝐴
𝑛−1 exp (−

𝛥𝑈‡

𝑅𝑇
)∏ 𝑄𝑖

𝜈𝑖
𝑖 . 
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and 𝑁𝐴 is Avogadro’s number (to convert the units properly to a mole basis). The 𝑄 values here represent 

partition functions with units of inverse volume and are the products of vibrational, rotational, translational, 

and electronic partition functions. Written mathematically, 

𝑄 = 𝑄𝑡𝑄𝑟𝑄𝑣
𝑁𝑄𝑒 

where 𝑁 is the number of vibrational modes. The value of 𝑁 is 3𝑁0 − 5 for linear molecules and 3𝑁0 − 6 

for nonlinear polyatomic molecules where 𝑁0 is the number of atoms. However, a key point must be 

addressed for transition states. The power of 𝑁 must be decreased by one for transition states because there 

is one less degree of freedom due to the pseudo-bond formed. For this, 

𝑄‡ = 𝑄𝑡𝑄𝑟𝑄𝑣
𝑁−1𝑄𝑒 

We now must define each of the partition functions. The translational partition function is defined as 

𝑄𝑡 ≡ (
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)

3
2
 

and has units of inverse volume. It typically has a value of about 1024 cm-3. Importantly, if we can constrain 

the system to be in a 2D space instead of 3D space, the exponent drops by a factor of 1/2.  

The rotational partition function is different depending on the shape of the molecule. For a linear molecule,  

𝑄𝑟 =
8𝜋2𝐼𝑘𝐵𝑇

𝜎ℎ2
 

and for a nonlinear molecule 

𝑄𝑟 =
8𝜋2(8𝜋3𝐼1𝐼2𝐼3)

1
2(𝑘𝐵𝑇)

3
2

ℎ3𝜎
 

In these equations, 𝜎 represents the symmetry number and is determined by the number of spatial 

orientations of the subject molecule that are identical. For easy reference, it is a value of 2 for linear 

molecules with a center of symmetry and 1 for linear molecules without a center of symmetry. The quantity 

𝐼 is the moment of inertia, and for the nonlinear case they are the three principal moments. The moment of 

inertia is defined as 

𝐼 =∑𝑚𝑖𝑟𝑖
2

𝑖

 

where 𝑟 is the distance to the axis of rotation. For a diatomic molecule, the moment of inertia is 𝐼 = 𝜇𝑅2 

where 𝜇 is the reduced mass and 𝑅 is the distance between the two atoms. For a linear, symmetric molecule 

like CO2, the moment of inertia is 𝐼 = 2𝑚O𝑟CO
2 , where 𝑚O is the mass of the oxygen atom and 𝑟CO is the 

C-O bond length. For a triatomic linear molecule, such as a D-D-H transition state, the moment of inertia 

would approximately be 𝐼 = 𝑚𝐷𝑟𝐷𝐷
2 +𝑚𝐻𝑟𝐻𝐷

2  (this assumes the center of the molecule is the center of 

mass, which is a reasonable approximation). The value of 𝑄𝑟 is unitless and approximately 102 − 104 for 

linear molecules and 103 − 106 for nonlinear molecules. 

The vibrational partition function is given by  
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𝑄𝑣 =∏(1 − exp (−
ℎ𝜈𝑖
𝑘𝐵𝑇

))
−1𝑛

𝑖

 

where 𝑛 is the degrees of vibrational freedom and 𝜈𝑖 is the vibrational frequency from IR or Raman 

spectroscopy. The value of 𝑄𝑣 is unitless and approximately 1 to 10. Note that spectra normally yield 

wavenumbers with units of inverse length. To convert a wavenumber 𝜈 to frequency, use 𝜈𝑖 = 𝑐𝜈𝑖. 

Finally, the electronic partition function is given by 

𝑄𝑒 =∑𝑔𝑖 exp (−
𝐸𝑖
𝑘𝐵𝑇

)

𝑖

 

where 𝑔𝑖 is the degeneracy and 𝐸𝑖 is the electronic energy above the ground state.  

If it is impossible or too inconvenient to calculate the partition functions directly, one can still make order 

of magnitude arguments. Generally, we can say that 

𝑄𝑖 ≈ 𝑓𝑡
3𝑓𝑟
𝑎𝑓𝑣
𝑁𝑓𝑒 

where 𝑎 = 2 and 𝑁 = 3𝑁0 − 5 for a linear molecule and 𝑎 = 3 and 𝑁 = 3𝑁0 − 6 for a polyatomic 

nonlinear molecule. For the transition state, 

𝑄‡ ≈ 𝑓𝑡
3𝑓𝑟
𝑎𝑓𝑣
𝑁−1𝑓𝑒 

We then can plug in 𝑓𝑡
3 ≈ 1024 cm−3, 𝑓𝑟

2 ≈ 102 − 104 (linear) or 𝑓𝑟
3 ≈ 103 − 106 (nonlinear), 𝑓𝑣 ≈ 1 −

3, and 𝑓𝑒 ≈ 1. 

When using TST, oftentimes a number of approximations are made to make the math easier. Generally 

speaking, 𝑄𝑒 is neglected unless dealing with transition metals in their excited states, radicals, or certain 

species like oxygen, which is triplet in the ground state. Also, for species with large vibrational frequencies, 

𝑄𝑣 ≈ 1. Another important thing to realize is that 𝑄𝑟 = 1 if the species is monatomic. 

6.3.2 COMPUTING RATES OF REACTION 
Keeping with the prior example, the rate of reaction is simply 

𝑟 = 𝑣‡[𝐴𝐵𝐶
‡] 

where 𝑣‡ is the frequency of passage over the energy barrier and [𝐴𝐵𝐶‡] is the concentration of the 

transition state. Substituting in for 𝐶‡ using the previously defined 𝐾𝐶
‡
 yields 

𝑟 = 𝑣‡𝐾𝐶
‡[𝐴𝐵][𝐶] 

We can define the frequency 𝑣‡ as the thermal energy provided such that 

𝑣‡ =
𝑅𝑇

𝑁𝐴ℎ
=
𝑘𝐵𝑇

ℎ
 

so that we can say 

𝑟 =
𝑘𝐵𝑇

ℎ
𝐾𝐶
‡[𝐴𝐵][𝐶] 
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Plugging in for 𝐾𝐶
‡
 yields 

𝑟 =
𝑘𝐵𝑇

ℎ

𝑁𝐴
𝑛−1𝑄‡

𝑄𝐴𝐵𝑄𝐶
exp (−

𝛥𝑈‡

𝑅𝑇
) [𝐴𝐵][𝐶] 

We should note that this takes the form of an Arrhenius-like expression. We can say that the pre-exponential 

factor is 

𝑘0 =
𝑘𝐵𝑇

ℎ

𝑁𝐴
𝑛−1𝑄‡

𝑄𝐴𝐵𝑄𝐶
 

such that 

𝑘 = 𝑘0 exp (−
𝛥𝑈‡

𝑅𝑇
) 

and then we get a functional form of  

𝑟 = 𝑘[𝐴𝐵][𝐶] 

like we would expect. For reference, a loose TST – something like bond dissociation – has 𝑘0 ≈ 10
16 s−1 

and a tight TST – something like associative bonding – has 𝑘0 ≈ 10
9 M−1s−1. 

We have therefore seen that for the general equation 𝑘 = 𝑘0𝑇
𝑚 exp (−

𝐸𝐴

𝑅𝑇
), 𝑚 = 0 for Arrhenius (which 

is empirical and works over small 𝑇 ranges), 𝑚 = 1/2 for collision theory (which works best for small 𝐸𝑎), 

and 𝑚 = 1 for large transition state theory (which works best for large 𝐸𝑎).  

6.3.3 THERMODYNAMIC ANALYSIS 
Recall that 

Δ𝐺∘‡ = −𝑅𝑇 ln(𝐾𝑎
‡) 

We can then of course use the fact that 

Δ𝐺∘‡ = Δ𝐻∘‡ − 𝑇Δ𝑆∘‡ 

to say 

𝐾𝑎
‡ = exp(

𝛥𝑆∘‡

𝑅
)exp(−

𝛥𝐻∘‡

𝑅𝑇
) 

We can then write the rate expression as 

𝑟 =

𝑘𝐵𝑇
ℎ
exp(

𝛥𝑆∘‡

𝑅 )exp (−
𝛥𝐻∘‡

𝑅𝑇 )

𝐶∘𝑛−1
[𝐴𝐵][𝐶] 

where 𝐶∘ is a reference concentration (usually given by 𝑃/𝑅𝑇 at 1 bar and 𝑇 for gases or as the molal 

concentration of pure components for liquids) and 𝑛 is the molecularity. 
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6.3.4 HAMMETT EQUATION 
Recall that we have the Evans-Polanyi relationship of 𝐸 = 𝐸0 + 𝛼Δ𝐻rxn for a family of reactions. We note 

that, from TST, a family of reactions is similar if it has a similar Δ𝑆‡. Oftentimes, other quantities aside 

from the Evans-Polanyi relationships are used, especially when dealing with organic molecules. They use 

thermochemical or structural properties.  

One of the most common set of parameters are the Hammett constants. Consider the reaction of aromatic 

species with various substituent groups, denote 𝑥. An example is shown below (the group is indicated by a 

𝑌 though) 

 

The Hammett equation relates the substituted group 𝑥 with the rate of reaction and takes into account the 

effect of inductive and resonance effects. It can be given by  

log (
𝑘𝑥
𝑘𝐻
) = 𝛾𝐻𝜎𝑥 

where 𝜎𝑥 ≡ log (
𝐾𝑥

𝐾𝐻
) and is a tabulated quantity3. The lower case 𝑘 values refer to reaction rate constants, 

and the capital 𝐾 values refer to equilibrium (acid) dissociation constants. For the Hammett equation, a 

substituted group of 𝑥 = 𝐻 (i.e. the group is a hydrogen atom) is often used as a reference.  

Higher values of 𝜎𝑥 indicate that the equilibrium constant is increased for a chemical group 𝑥 with respect 

to the hydrogen reference, meaning that the reaction is shifted more in the forward direction (specifically, 

via a stabilization of negative charge via resonance and inductive effects). Therefore, the acidity of the 

reactant molecule increases when 𝜎𝑥 > 0. Such a substituent is considered to be an electron-withdrawing 

group because it will stabilize the product anion by withdrawing negative charge away from the reaction 

site. Conversely, molecules with 𝜎𝑥 < 0 indicate an electron-donating group where the acid dissociation is 

disfavored since the electron density is increased near the reaction site. 

There are also trends that can be seen with the 𝛾𝐻 values, which are easier to see when you make the 

equation 𝑘𝑥 = 𝑘𝐻10
𝛾𝐻𝜎𝑥. For 𝛾𝐻 > 1, the reaction is more sensitive to substituents than the reference 

molecule, and negative charge is built up in the transition state of the reaction. The reaction is assisted by 

electron-withdrawing groups. For 𝛾𝐻 = 0, there is no sensitivity to substituents, and no charge is built or 

lost. For 𝛾𝐻 < 0, the reaction builds up positive charge in the transition state of the reaction. The reaction 

is assisted by electron-donating groups. 

It should also be noted that 𝜎𝑥 values are approximately additive, so if an aromatic ring has 2 Cl groups, 

then the 𝜎𝑥 value can be approximated as 2𝜎Cl. 

There are alternate forms of the Hammett parameter that are parameterized for the reactions that require 

positive and negative charge stabilization, given by 𝜎+ and 𝜎−, respectively. For pure inductive effects, 𝜎′ 
can be used. 

                                                      
3 Some references use log10 whereas others use ln.  
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6.3.5 TAFT EQUATION 
The Taft equation is another linear free energy relationship and was developed as a modification to the 

Hammett relationship. The Taft equation describes the effect of sterics and induction. The general equation 

is 

log (
𝑘𝑥
𝑘CH3

) = 𝛾∗𝜎∗ + 𝐸𝑆 

where 𝜎∗ is a purely inductive effect and 𝐸𝑠 is a purely steric effect. In the limit of steric effects being 

negligible, it simplifies to the same functional form as the Hammett equation. The trends in 𝛾∗ are then the 

same as the trends for 𝛾𝐻.  
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7 SURFACE CATALYSIS 
7.1 ADSORPTION RATE LAWS 

7.1.1 MOLECULAR ADSORPTION 
We will now consider surface catalysis, wherein a reactant in a continuum diffuses into a catalyst particle, 

binds to the surface, reacts to form a new species, desorbs, diffuses out of the catalyst particle, and enters 

the continuum. As can be seen from this outline, heterogeneous catalysis incorporates adsorption, transport 

phenomena, reactions, and bulk reactor models. We will focus on developing a basic kinetic model first 

from elementary steps including adsorption, desorption, and surface reaction. 

Consider the first step: adsorption. We will use an asterisk to denote a surface site. As such, the adsorption 

step can be given by 

𝐴 +∗
𝑘1,𝑘−1
↔   𝐴∗ 

For example, this could be CO + S∗↔CO∗ (note that when dealing with gases, such as CO, it is standard 

to use a partial pressure instead of concentration). This specific type of adsorption is referred to molecular 

(or non-dissociative) adsorption. The equation for the net rate of adsorption can then be written as  

𝑟ad = 𝑘1𝐶𝐴𝐶∗ − 𝑘−1𝐶𝐴∗ = 𝑘1 (𝐶𝐴𝐶∗ −
𝐶𝐴∗
𝐾𝐴
) 

where 𝐾𝐴 ≡ 𝑘1/𝑘−1 and is referred to as the adsorption equilibrium constant. The adsorption rate constant 

𝑘1 is relatively independent of temperature whereas the desorption constant 𝑘−1 increases exponentially 

with increasing temperature, such that the equilibrium adsorption constant 𝐾𝐴 decreases exponentially with 

increasing temperature. A site balance can generally be written as 

𝐶𝑇 = 𝐶∗ +∑𝐶𝑖∗
𝑖

 

where the summation term accounts for any other adsorbed species to the surface sites. In this example, 

𝐶𝑇 = 𝐶∗ + 𝐶𝐴∗ 

We know that at equilibrium, the net rate of adsorption should be zero. Employing this condition yields 

𝐶𝐴∗ = 𝐾𝐴𝐶𝐴𝐶∗ 

Substituting in for 𝐶∗ from the site balance yields 

𝐶𝐴∗ = 𝐾𝐴𝐶𝐴(𝐶𝑇 − 𝐶𝐴∗) 

which can be rearranged to 

𝐶𝐴∗ =
𝐾𝐴𝐶𝐴𝐶𝑇
1 + 𝐾𝐴𝐶𝐴

 

This equation is specifically called the Langmuir isotherm. This equation can be linearized to the following 

form for data-fitting purposes, as shown below 

𝐶𝐴
𝐶𝐴∗

=
1

𝐾𝐴𝐶𝑇
+
𝐶𝐴
𝐶𝑇
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Typically, the parameter 𝜃 is defined as the number of moles of species adsorbed divided by the number of 

moles in the monolayer. This would be 

𝜃 =
𝐶𝐴∗
𝐶𝑇
=

𝐾𝐴𝐶𝐴
1 + 𝐾𝐴𝐶𝐴

 

The linearized form is 

1

𝜃
=

1

𝐾𝐴𝐶𝐴
+ 1 

Oftentimes, 𝜃 is defined as the volume adsorbed divided by the volume adsorbed at saturation: 𝑉/𝑉𝑀. In 

this definition, the above expression simply becomes 

1

𝑉
= (

1

𝐶𝐴
) (

1

𝐾𝐴𝑉𝑀
) +

1

𝑉𝑀
 

7.1.2 DISSOCIATIVE ADSORPTION 
It is possible to have types of adsorption that differ from the previous scenario. For instance, consider a 

molecule AB. It can either adsorb molecularly, as described before, or it can dissociate and have A bound 

to one surface site and B bound to a different surface site. This is described below 

AB + 2 ∗
𝑘1,𝑘−1
↔   A∗ + B∗ 

This could be CO + 2 ∗↔ C∗ +O∗, for instance. In this case, the adsorption rate can be written as 

𝑟ad = 𝑘1𝐶𝐴𝐵𝐶∗
2 − 𝑘−1𝐶𝐴∗𝐶𝐵∗ = 𝑘1 (𝐶𝐴𝐵𝐶∗

2 −
𝐶𝐴∗𝐶𝐵∗
𝐾𝐴

) 

where 𝐾𝐴 ≡ 𝑘1/𝑘−1 once again. For dissociative adsorption, both 𝑘1 and 𝑘−1 increase exponentially with 

temperature, unlike the case with molecular adsorption. We can then employ equilibrium conditions such 

that 

𝐶𝐴∗𝐶𝐵∗ = 𝐾𝐴𝐶𝐴𝐵𝐶∗
2 

The site balance is now 

𝐶𝑇 = 𝐶∗ + 𝐶𝐴∗ + 𝐶𝐵∗ 

Substituting in for 𝐶∗ into our rate equation at equilibrium yields 

𝐶𝐴∗𝐶𝐵∗ = 𝐾𝐴𝐶𝐴𝐵(𝐶𝑇 − 𝐶𝐴∗ − 𝐶𝐵∗)
2 

For the case of 𝐶𝐴∗ = 𝐶𝐵∗ (which would be anticipated), we can arrive at 

𝐶𝐴∗ = 𝐶𝐵∗ =
(𝐾𝐴𝐶𝐴𝐵)

1
2𝐶𝑇

1 + 2(𝐾𝐴𝐶𝐴𝐵)
1
2

 

We now have a Langmuir isotherm for this system. Using the 𝜃 nomenclature, this is the same as  
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𝜃 =
(𝐾𝐴𝐶𝐴𝐵)

1
2

1 + 2(𝐾𝐴𝐶𝐴𝐵)
1
2

 

The equation can be linearized by 

√𝐶𝐴𝐵
𝐶𝐴∗

=
1

𝐶𝑇√𝐾𝐴
+
2√𝐶𝐴𝐵
𝐶𝑇

 

which equivalently is the following when 𝐶𝑇 is multiplied through and √𝐶𝐴𝐵 is divided through 

1

𝜃
=

1

√𝐾𝐴𝐶𝐴𝐵
+ 2 

It can be easily shown that the dissociative adsorption process of A2 + 2 ∗↔ 2𝐴
∗ is identical to the case 

before but the denominator in the expression for 𝐶𝐴∗ is 1 + (𝐾𝐴𝐶𝐴2)
1

2 where the factor of 2 disappears 

because the site balance is just 𝐶𝑇 = 𝐶∗ + 𝐶𝐴∗. Therefore, in this case 

𝐶𝐴∗ =
(𝐾𝐴𝐶𝐴2)

1
2𝐶𝑇

1 + (𝐾𝐴𝐶𝐴2)
1
2

 

We can define the 𝜃 parameter then such that 

𝜃 =
(𝐾𝐴𝐶𝐴2)

1
2

1 + (𝐾𝐴𝐶𝐴2)
1
2

 

which can be linearized to 

1

𝜃
=

1

√𝐾𝐴𝐶𝐴2
+ 1 

Oftentimes, a plot of 1/𝜃 vs. 1/√𝐶𝐴2 will have deviations at high and low coverages (and by extension 

high and low partial pressures) due to adsorbate-adsorbate interactions and site heterogeneity. 

7.1.3 COMPETITIVE ADSORPTION 
It is possible to have two species (A and B) competing for surface sites. The site balance would then be 

written as 

𝐶𝑇 = 𝐶∗ + 𝐶𝐴∗ + 𝐶𝐵∗ 

We start at 

𝐶𝐴∗ = 𝐾𝐴𝐶𝐴𝐶∗ 

Plugging in the new site balance yields 

𝐶𝐴∗ = 𝐾𝐴𝐶𝐴(𝐶𝑇 − 𝐶𝐴∗ − 𝐶𝐵∗) 
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We know that 

𝐶𝐵∗ = 𝐾𝐵𝐶𝐵𝐶∗ 

So 

𝐶𝐴∗ = 𝐾𝐴𝐶𝐴(𝐶𝑇 − 𝐶𝐴∗ − 𝐾𝐵𝐶𝐵𝐶𝐴∗) 

which can be rearranged to 

𝐶𝐴∗ =
𝐾𝐴𝐶𝐴𝐶𝑇

1 + 𝐾𝐴𝐶𝐴 + 𝐾𝐵𝐶𝐵
 

An analogous procedure for B would yield 

𝐶𝐵∗ =
𝐾𝐵𝐶𝐵𝐶𝑇

1 + 𝐾𝐴𝐶𝐴 + 𝐾𝐵𝐶𝐵
 

7.2 SURFACE REACTION RATE LAWS 

7.2.1 SINGLE SITE 
After a reactant has been adsorbed, it can then react. A single site mechanism is one in which the site where 

the reactant is adsorbed is the only one involved in the reaction. Written out, this would be 

A∗
𝑘2,𝑘−2
↔   B∗ 

for the transformation of species A to B on the catalyst surface. The rate law for this is given by 

𝑟SR = 𝑘2 (𝐶𝐴∗ −
𝐶𝐵∗
𝐾SR

) 

where 𝐾SR ≡ 𝑘2/𝑘−2.  

7.2.2 DUAL SITE 
A dual-site mechanism is one in which a reactant adsorbed to a site reacts with a separate site. One way this 

can be written is by the following equation: 

A∗ +∗
𝑘2,𝑘−2
↔   B∗ +∗ 

The rate law for this is given by 

𝑟SR = 𝑘2 (𝐶𝐴∗𝐶∗ −
𝐶𝐵∗𝐶∗
𝐾SR

) 

A dual site reaction may also consist of a reaction between two adsorbed species, given by 

A∗ + B∗
𝑘2,𝑘−2
↔   C∗ + D∗ 

The rate law for this is given by 

𝑟SR = 𝑘1 (𝐶𝐴∗𝐶𝐵∗ −
𝐶𝐶∗𝐶𝐷∗
𝐾SR

) 
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7.2.3  REACTION WITH UNBOUND SPECIES 
A reaction can also occur between an adsorbed molecule and a molecule in the continuum (when the 

adsorbed molecule reacts with a molecule in the gas phase, this is typically referred to as an Eley-Rideal 

mechanism). The general equation is 

A∗ + B
𝑘2,𝑘−2
↔   C∗ 

The corresponding rate equation is 

𝑟SR = 𝑘2 (𝐶𝐴∗𝐶𝐵 −
𝐶𝐶∗
𝐾SR

) 

7.3 DESORPTION RATE LAWS 
The process of desorption is given by 

C∗
𝑘3,𝑘−3
↔   C +∗ 

The rate of desorption can be given by 

𝑟Des = 𝑘3 (𝐶𝐶∗ −
𝐶𝐶𝐶∗
𝐾Des

) 

where 𝐾Des ≡ 𝑘3/𝑘−3. We can easily see that the desorption equilibrium constant is simply the inverse of 

the adsorption equilibrium constant. As such, we can arrive at 

𝑟Des = 𝑘3(𝐶𝐶∗ − 𝐾Ad𝐶𝐶𝐶∗) 

or 

𝑟Des = 𝑘−3 (
𝐶𝐶∗
𝐾Ad

− 𝐶𝐶𝐶∗) 

if we divide through by the adsorption equilibrium constant. 

7.4 DETERMINING THE REACTION MECHANISM AND RATE-LIMITING STEP 
The following procedure can generally be employed when trying to determine the reaction mechanism for 

a given reaction in terms of measurable:  

1. Propose a mechanism consisting of an adsorption step, surface reaction step, and desorption step 

2. Assume a rate-limiting step. The first guess should generally be the surface reaction step.   

3. Write out the elementary rate law for the rate-limiting step 

4. There will be immeasurable species in Step 3 that you will want removed. Write out the elementary 

rate laws for the relevant reactions and apply equilibrium as needed to solve for the concentrations 

of adsorbed species (𝐶𝑖∗). If the reactions are not reversible, then instead say that the net rate of 

generation of 𝐶𝑖∗ is zero and apply PSSH.  

5. Write out the site balance and solve for the concentration of vacant sites (plugging in quantities 

from Step 4). You don’t want the concentrations of empty sites in the overall rate expression, so 

this will help get rid of them. 

6. Derive the rate law by combining Steps 2-5.  

7. Compare the results with experimental data. If the data does not agree, choose a different rate-

limiting step and/or propose a different mechanism. 
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7.5 NONIDEALITIES 

7.5.1 NONIDEAL SURFACES 
Real surfaces are not perfect and have defects/deformations that cause Δ𝐻ads to not be constant over the 

entire surface. We know that the equilibrium constant is 

𝐾eq = exp (−
𝛥𝐺𝑎𝑑𝑠
𝑅𝑇

) = exp (
𝛥𝑆𝑎𝑑𝑠
𝑅

−
Δ𝐻ads
𝑅𝑇

) 

From thermodynamics and the above expression, we then see that Δ𝐻ads < 0 is favorable and Δ𝑆ads > 0 

is favorable. In reality, Δ𝐻ads is a function of 𝜃. The Langmuir models, derived in the following subsections, 

assume Δ𝐻ads is a constant and is only good for isolated sites.  

Additional models have been developed. The Temkin model states that 

Δ𝐻ads(𝜃) = Δ𝐻𝑎𝑑𝑠
0 (1 − 𝛼𝜃) 

where Δ𝐻ads
0  is the heat of adsorption at zero surface coverage and 𝛼 is a fitting parameter. This expression 

is an empirical relationship that simply makes Δ𝐻ads linearly decrease with increasing 𝜃. For molecular 

adsorption, the Temkin isotherm is 

𝜃 ≈
𝑅𝑇

Δ𝐻ads
0 𝛼

ln(𝐾𝐴𝐶𝐴) 

The Freundlich model states that 

Δ𝐻ads(𝜃) = −Δ𝐻ads
0 ln(𝜃) 

This model completely breaks down as 𝜃 → 0. It can be shown via the Clausius-Clapeyron equation that 

the Freundlich isotherm for molecular adsorption takes the form of 

𝜃 = 𝛼𝐶𝐴
𝑚 

where 𝛼 and 𝑚 fitting parameters. The value of 𝑚 is directly related to the intensity of adsorption. The 

value of 𝛼 is an indicator of the adsorption capacity. 

7.5.2 STICKING PROBABILITY 
The sticking probability is defined  

𝑆(𝜃) =
# molecules that stick

# molecules hitting surface
 

This is often reported as 𝑆(𝜃)/𝑆(0) in the literature. Ideally, 𝑆(𝜃) linearly decreases with increasing 𝜃 since 

the loss of available sites makes it less likely that a molecule will stick when it hits the surface. However, 

in reality it can take on other shapes. For instance, let us consider  

𝐴2
𝑘𝑑
↔𝐴2,surface + 2 ∗

𝑘𝑎
→ 2𝐴∗ 

This is showing that a diatomic gas A2 comes in contact with the surface but does not always bind it. We 

can apply PSSH to the A2,surface intermediate such that 

𝑑[𝐴2,surfrace]

𝑑𝑡
= 𝜙𝐹𝐴 − 𝑘𝑑[𝐴2,surface] − 𝑘𝑎[𝐴2,surface](1 − 𝜃)

2 ≈ 0 
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Here, 𝜙 is the trapping ratio, 𝐹𝐴 is the flux of 𝐴, and 𝜃 is the fractional coverage. Note that the (1 − 𝜃)2 

term comes in because that is effectively 𝐶∗
2/𝐶𝑇

2. We know that the sticking coefficient is 

𝑆(𝜃) =
𝑘𝑎[𝐴2,surface](1 − 𝜃)

2

𝐹𝐴
 

since this represents the number of molecules that stick to the surface divided by the number of molecules 

that hit. Plugging in the PSSH equation solved for 𝐹𝐴 into the above definition of the sticking coefficient 

yields  

𝑆(𝜃) =
𝑘𝑎[𝐴2,surface](1 − 𝜃)

2𝜙

𝑘𝑑[𝐴2,surface] + 𝑘𝑎[𝐴2,surface](1 − 𝜃)
2
=

𝑘𝑎(1 − 𝜃)
2𝜙

𝑘𝑑 + 𝑘𝑎(1 − 𝜃)
2
 

At zero coverage, 

𝑆(0) =
𝑘𝑎𝜙

𝑘𝑑 + 𝑘𝑎
 

so that 

𝑆(𝜃)

𝑆(0)
=
(𝑘𝑑 + 𝑘𝑎)(1 − 𝜃)

2

𝑘𝑑 + 𝑘𝑎(1 − 𝜃)
2

 

If we define 𝐾 ≡ 𝑘𝑎/𝑘𝑑 then we arrive at 

𝑆(𝜃)

𝑆(0)
=
(1 + 𝐾)(1 − 𝜃)2

1 + 𝐾(1 − 𝜃)2
 

Recall from the molecular adsorption section that 𝐾 decreases exponentially with increasing temperature. 

As such, at the low temperature limit and low values of 𝜃, we find that 𝑆(𝜃)/𝑆(0) ≈ 1. At the high 

temperature limit, we find that 𝑆(𝜃)/𝑆(0) ≈ (1 − 𝜃)2.  
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8 REACTIONS IN HETEROGENEOUS SYSTEMS 
8.1 DEFINITIONS 

8.1.1 DIFFUSIVITY 
In kinetic processes that occur with heterogeneous catalysts, the reactant must diffuse through the porous 

catalyst in order to react. Therefore, there are oftentimes diffusion limitations that must be considered. We 

will first define a few relevant terms when dealing with transport in porous media. 

The void fraction and tortuosity of a porous particle are defined as 

𝜀 ≡ void fraction =
volume of void space

total volume (voids + solids)
 

𝜏 ≡ tortuosity =
actual distance between two points

shortest distance between two points
 

There is also the molecular diffusivity, often denote 𝐷𝑚, which is a strong function of the particle diameter. 

The effective diffusivity (for a species 𝐴) is defined as  

𝐷𝐸𝐴 =
𝜀𝐷𝑚,𝐴
𝜏

 

8.1.2 THIELE MODULUS 
The Thiele modulus for reaction order 𝑛 in a spherical geometry is defined as4 

𝜙𝑛
2 =

𝑅2𝑘𝑛𝐶𝐴,𝑠
𝑛−1

𝐷𝐸𝐴
∼
surface reaction

diffusivity
 

When the Thiele modulus is small, the kinetics are reaction limited whereas when it is large, the reaction is 

diffusion limited. Note that when 𝑛 = 1, there is no dependence on 𝐶𝐴,𝑠. The general definition of the Thiele 

modulus for an arbitrary geometry is given by 

𝜙𝑛
2 = 𝑊2 (

𝑛 + 1

2
⋅
𝑘𝑛𝐶𝐴,𝑠

𝑛−1

𝐷𝐸𝐴
) 

where 𝑊 is an arbitrary volume/surface area expression for the particular shape. It should be noted that this 

definition of 𝜙𝑛
2 is different by a numerical factor. Generally, just use the first definition for spheres and 

the second one for more complicated geometries. Everything is an order of magnitude argument anyway. 

8.1.3 EFFECTIVENESS FACTOR 
The effectiveness factor is defined as  

𝜂 =
observed reaction rate

reaction rate if all 𝐶𝐴 = 𝐶𝐴,𝑠
 

                                                      
4 Note that the definition of the Thiele modulus oftentimes has the 𝑘𝑛 term replaced with a 𝑘𝑛𝜌𝐵𝑆𝐴 term. In this, 𝜌𝐵 

is the bulk density and 𝑆𝐴 is the surface area divided by the mass of the catalyst. This is because oftentimes rates are 

reported in moles/(cm2 s) and therefore 𝑘𝑛 has different units than usual. If one is dealing with a rate that has 

moles/(cm3 s) or equivalent dimensions, then simply omit the 𝑆𝐴𝜌𝐵 unit correction term in the definition. If one is 

dealing with a rate that has units of 1/s then keep the 𝜌𝐵 term but omit the 𝑆𝐴 term. 
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In the limit of 𝜂 → 1 (𝜙𝑛 → 0), there are no diffusion limits. In the limits of 𝜂 → 0 (for 𝜙𝑛 → ∞), there are 

significant diffusion limits. For a first-order reaction in a sphere, 

𝜂 =
3(𝜙1 coth(𝜙1) − 1)

𝑅2𝑘1𝜌𝐵𝑆𝐴
𝐷𝐸𝐴

=
3

𝜙𝑛
2
(𝜙𝑛 coth(𝜙𝑛) − 1) 

It turns out the right-hand form of this expression is true for other orders in spherical catalysts as well since 

the reaction order only changes the power of 𝑛 − 1 in the Thiele modulus. 

For a flat plate, 

𝜂 =
tanh(𝜙)

𝜙
 

The observed rate is  

−𝑟𝐴,obs = −𝜂𝑟𝐴,𝑠 = 𝜂𝑘0𝑒
−
𝐸𝑎
𝑅𝑇𝐶𝐴,𝑠

𝑛 = 𝜂𝑘𝑛𝐶𝐴,𝑠
𝑛  

where 𝑘𝑛 is the intrinsic rate constant. Also note that 𝜂𝑘𝑛 = 𝑘obs. 

8.2 LIMITING CASES 

8.2.1 NO DIFFUSION LIMITATIONS 
There are negligible diffusion limitations when 𝜂 is close to 1 and when 𝜙 is close to zero. When the Thiele 

modulus is small, 

𝜙 → 0,      𝜂 → 1 

For small 𝜙, the observed reaction rate is the surface rate (no diffusion limits), so 

𝜙 = small,     𝜂 → 1,     𝑟𝐴,obs = 𝑟𝐴,𝑠,     𝑘𝑛 = −
𝑟obs
𝐶𝐴,𝑠
𝑛  

This can happen at small particle radius, small rate constants, high effective diffusivity, and/or low 

temperatures. Therefore, when running at these conditions, one is measuring the real (i.e. intrinsic rate 

constant). 

8.2.2 DIFFUSION LIMITATIONS 
There are diffusion limitations when 𝜂 is less than 1 and when 𝜙 is greater than zero. It is always true that 

for large Thiele modulus, 

𝜙 → ∞,     𝜂 ∝
1

𝜙
 

The above expression becomes an equality of 𝜂 → 3/𝜙 for a sphere and 𝜂 → 1/𝜙 for a plate. Then,  

𝜂1
𝜂2
=
𝜙𝑛,2
𝜙𝑛,1

 

For large 𝜙, we know that for a sphere is the following 

𝜙 = large,      − 𝑟𝐴,obs = 𝜂𝑘𝑛𝐶𝐴,𝑠
𝑛 =

3

𝜙𝑛
𝑘𝑛𝐶𝐴,𝑠

𝑛 =
3

𝑅
√𝐷𝐸𝐴√𝑘𝑛𝐶𝐴,𝑠 
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Recall that 𝑘𝑛 is an intrinsic rate constant and can be expressed as √𝑘𝑛 = √𝑘𝑛,0 exp (−
𝐸𝑎

2𝑅𝑇
) where 𝑘𝑛,0 is 

the pre-exponential factor. This therefore says that for large 𝜙 (diffusion limitations), we have 

𝜙 = large,     𝐸𝐴,obs =
𝐸𝐴
2

 

If one includes the temperature dependence of 𝐷𝐸𝐴, it can be shown that 

𝐸𝐴,obs =
𝐸𝐴 + 𝐸diffusion

2
 

The apparent order can be expressed as the following (for 𝑛 ≠ 1) 

𝑛app = 𝑛 +
𝑛 − 1

2

𝑑 ln 𝜂

𝑑 ln𝜙𝑛
 

such that the observed order is between the true order and 1. 

One can find the diffusivity in the diffusion limiting regime by backing out 𝜂 from  

𝑟𝐴,obs = 𝜂𝑘𝑛𝐶𝐴,𝑠
𝑛  

then using this value of 𝜂 to back out 𝐷𝐸𝐴 from  

𝜂 =
3

𝜙
= 3(𝑅√

𝑘𝑛𝐶𝐴,𝑠
𝑛−1

𝐷𝐸𝐴
)

−1

  

8.3 DETERMINING IF DIFFUSION LIMITATIONS ARE DOMINANT 

8.3.1 CHANGING PARTICLE SIZE 
It is generally true that the ratio of any two rates is 

𝑟𝐴,obs,1
𝑟𝐴,obs,2

=
𝜂1
𝜂2

 

provided 𝑘𝑛 and 𝐶𝐴,𝑠 is the same between the two rates (e.g. if you change the catalyst size). If all the 

parameters are the same except catalyst size, one can also state that 

𝜙1
𝜙2
=
𝑅1
𝑅2

 

For the case of diffusion limitations, since 𝜂 ∝ 1/𝜙, one can state that 

𝜂1
𝜂2
=
𝜙𝑛,2
𝜙𝑛,1

 

Therefore, when in a diffusion limiting regime,  

𝑟𝐴,obs,1
𝑟𝐴,obs,2

=
𝑅2
𝑅1

 

The above expression can be tested to see if one is operating in the diffusion-limiting regime. Conversely, 

there are no diffusion limitations if changing the radius has no impact on the observed rate.  



REACTIONS IN HETEROGENEOUS SYSTEMS | 46 
 

8.3.2 WEISZ-PRATER CRITERION 
Start with the definition of the Thiele modulus rearranged slightly as  

𝑘𝑛 =
𝜙𝑛
2

𝑅2𝐶𝐴,𝑠
𝑛−1 𝐷𝐸𝐴 

Substituting this into the rate expression yields 

𝑟𝐴,obs = 𝜂
𝜙𝑛
2

𝑅2
𝐷𝐸𝐴𝐶𝐴,𝑠 

This can be rearranged to 

𝜂𝜙𝑛
2 =

𝑟𝐴,obs𝑅
2

𝐷𝐸𝐴𝐶𝐴,𝑆
 

For 𝜙 ≪ 1, 𝜂 = 1 there is no pore diffusion limitations and so we expect 𝜂𝜙𝑛
2 ≪ 1. For 𝜙 ≫ 1, 𝜂 ∝ 1/𝜙𝑛 

there is strong pore diffusion limitations and 𝜂𝜙𝑛
2 ≫ 1. Note that for first order, the above expression 

simplifies to 

𝜂𝜙1
2 =

𝑘obs𝑅
2

𝐷𝐸𝐴
 

Oftentimes, the above expression is written with a 𝑊2 instead of 𝑅2 such that for a sphere 𝑊2 = (𝑅/3)2. 

This causes a difference of a factor of 9 but should not change the overall trend. 

8.4 EXTERNAL MASS TRANSFER 

8.4.1 MASS TRANSFER COEFFICIENT 
In this section, we will consider the case where 𝐶𝐴,bulk ≠ 𝐶𝐴,surf. In reality, there is a boundary layer 

between the bulk and the pellet surface where the concentration varies. The mass flux at the surface of the 

catalyst can be given by  

mass flux = 𝑘𝑔(𝐶𝐴,b − 𝐶𝐴,𝑠) 

where 𝑘𝑔 is the mass transfer coefficient. Of course, the rate of reaction at the catalyst surface is given by 

𝑟𝐴 = 𝑘𝐶𝐴,𝑠
𝑛 . Let us assume, for example, 𝑛 = 2. We can then equate these two expressions, solve for 𝐶𝐴,s, 

and plug back into 𝑟𝐴 to arrive at 

𝑟𝐴 = 𝑘𝑔((1 +
𝑘𝑔

2𝑘𝐶𝐴,b
) − √(1 +

𝑘𝑔

2𝑘𝐶𝐴,b
) − 1)𝐶𝐴,b 

This is clearly neither 1st nor 2nd order but some intermediate. In the limit of 𝑘 ≫ 𝑘𝑔, we arrive at  

𝑟𝐴 = 𝑘𝑔𝐶𝐴,s 

which is 1st order and limited due to mass transfer. Contrastingly, in the limit of 𝑘𝑔 ≫ 𝑘, we arrive at 

𝑟𝐴 = 𝑘𝐶𝐴,s
2  

which is what we’d expect – 2nd order and a rate limited by reaction.  
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8.4.2 MASS TRANSFER IN REACTOR ENGINEERING 
In reactors, one typically does not measure the rate directly. Instead, inputs and outputs are measured. For 

example, the differential conversion is usually found, which is defined as 

𝑋𝐴 =
𝐹𝐴0 − 𝐹𝐴
𝐹𝐴0

 

The rate is then found from 

𝑟𝐴 = −
𝑋𝐴𝐹𝐴0
𝑊

 

where 𝑊 is the catalyst weight. Oftentimes, it is best to keep 𝑋𝐴 < 10% since the kinetics can’t be read 

easily if it is higher.  

8.4.3 NONISOTHERMAL THEORY 
A number of catalytic reactions are accompanied by thermal effects from the heat of reaction, so it is 

important to consider a combined mass and energy balance approach. The result of such an approach yields 

𝑇𝑠 − 𝑇𝑠,𝑠 =
𝐷𝑒𝐴(−Δ𝐻)

𝜆𝑒
(𝐶𝐴,𝑠 − 𝐶𝐴) 

where 𝑇𝑠 is the temperature on the outer surface of the particle, 𝑇𝑠,𝑠 is the surface of a pore in the particle, 

and 𝜆𝑒 is the effective thermal conductivity in the pore. The large possible temperature difference is when 

𝐶𝐴 → 0. In this case we can say that 

(Δ𝑇𝑠)

𝑇𝑠,𝑠
=
𝐷𝑒𝐴(−Δ𝐻)𝐶𝐴,𝑠

𝜆𝑒𝑇𝑠,𝑠
≡ 𝛽 

where 𝛽 is the reaction heat parameter. 

8.4.4 THIN-FILM DIFFUSION REACTION 
We now want to know how a reaction can speed up the mass transfer, which is incorporated in an 

enhancement factor, 𝐹. Consider the following concentration profile for diffusion and reaction into a thin 

film from the bulk. The leftmost side represents the bulk gas phase whereas the rightmost side represents 

the bulk liquid phase. The length 𝑦𝑔 is the gas film length, and 𝑦𝐿 is the film length. In the film, Henry’s 

Law applies, and 𝑃𝐴,𝑖 = 𝐻𝐶𝐴,𝑖.  

 

We will define the following gas film and liquid film mass transfer coefficients 

𝑃𝐴 

𝐶𝐴,b 
𝐶𝐴 

𝐶𝐴,𝑖 

𝑦𝑔 𝑦𝐿 

𝑃𝐴,𝑖 
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𝑘𝑔 =
𝐷𝐴,𝑔

𝑦𝑔
,     𝑘𝐿 =

𝐷𝐴,𝐿
𝑦𝐿

 

For a pseudo first order, irreversible reaction, 

𝐶𝐴 =

𝐶𝐴,𝑖 sinh(𝛾 (1 −
𝑦
𝑦𝐿
)) + 𝐶𝐴,b sinh (𝛾

𝑦
𝑦𝐿
)

sinh(𝛾)
 

where 𝛾 is the Hatta parameter defined as 

𝛾 ≡ 𝑦𝐿√
𝑘

𝐷𝐴,𝐿
=
√𝑘𝐷𝐴,𝐿

𝑘𝐿
 

The flux at the interface can be given by 

𝑁𝐴,𝑖 =
𝛾

tanh(𝛾)
(1 −

𝐶𝐴,𝑏
𝐶𝐴,𝑖

1

cosh(𝛾)
)𝑘𝐿𝐶𝐴,𝑖 

The effectiveness factor is 

𝜂𝐿 =
𝑁𝐴,𝑖𝐴𝑣
𝑘𝐶𝐴,𝑖

 

where 𝑁𝐴,𝑖 is the flux at the interface, 𝐴𝑣 is the surface area per volume, and 𝑘𝐶𝐴,𝑖 is the reaction rate at the 

interface. If we define the Sherwood number as  

Sh =
𝑘𝐿
𝐴𝑣𝐷𝐴

 

It can be shown that the effectiveness factor is 

𝜂𝐿 =
1

Sh γ tanh(𝛾)
(1 −

𝐶𝐴,𝑏
𝐶𝐴,𝑖

1

cosh(𝛾)
) 

For very fast reactions (𝛾 > 5 or so and 𝐶𝐴,𝑏 → 0), we get 

𝜂𝐿 =
1

𝛾 Sh
= 𝐴𝑣√

𝐷𝐴
𝑘

 

We can also define the enhancement factor as 

𝐹 =
𝑁𝐴,obs

𝑘𝐿(𝐶𝐴,𝑖 − 𝐶𝐴,𝑏)
=

𝛾

tanh(𝛾)
(1 −

𝐶𝐴,𝑏
𝐶𝐴,𝑖

1

cosh(𝛾)
) 

For very fast reactions, 

𝐹 =
𝛾

tanh(𝛾)
≈ 𝛾 


