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1 INTRODUCTION TO HEAT TRANSFER AND MASS TRANSFER 
1.1 HEAT FLOWS AND HEAT TRANSFER COEFFICIENTS 

1.1.1 HEAT FLOW 
A typical problem in heat transfer is the following: consider a body “A” that exchanges heat with another 

body, of infinite medium, “B”. This can be broken down into either a steady problem or a transient problem. 

In the steady case, we have (for example) 𝑇𝐴 = constant, 𝑇𝐵 = constant, and we must find the total heat 

flow rate, 𝑄̇, between A and B. In the transient case, we have (for example) 𝑇𝐵 = constant, 𝑇𝐴 = 𝑇𝐴|𝑡=0 =
𝑇𝐴0, and we must find 𝑇𝐴 as a function of time, 𝑡. 

In most cases (exceptions: free convection due to density differences and radiation heat transfer), the heat 

flow rate is proportional to the temperature difference. In other words, from B to A we have 

𝑄̇ ∝ 𝑇𝐵 − 𝑇𝐴. 

Note this means that heat transfer, unlike fluid mechanics, is often a linear problem. It is convenient to 

define a total, integral heat transfer coefficient 𝐻 such that 

𝑄̇ ≡ 𝐻(𝑇𝐵 − 𝑇𝐴). 

For linear problems, 𝐻 will be independent of 𝑇𝐴 and 𝑇𝐵. Also, 𝐻 depends on physical properties of the 

bodies, their shapes, the fluid flow, and so on. 

1.1.2 AVERAGE HEAT FLUX DENSITY 
It is often very useful to consider an average area-based heat transfer coefficient, ℎ̅, and an average heat 

flux density, 𝑞̅, instead. In this case, we have 

𝑞̅ ≡ ℎ̅(𝑇𝐵 − 𝑇𝐴), 

where  

ℎ̅ ≡
𝐻

𝐴
. 

With this definition, we can say that 

𝑄̇ = 𝑞̅𝐴. 

1.1.3 LOCAL HEAT FLUX DENSITY 
In general, the heat flux will differ from point to point. It is therefore more accurate to use a local heat flux 

density, 𝑞, and a local area heat transfer coefficient (LAHTC), ℎ. In this case, we have 

𝑞 ≡ ℎ(𝑇𝐵 − 𝑇𝐴), 

where  

ℎ ≡
𝑑𝐻

𝑑𝐴
. 

In other words, 

𝐻 = ∫ℎ𝑑𝐴 



and  

𝑄̇ = ∫𝑞 𝑑𝐴. 

1.1.4 DIMENSIONS 
Note the following dimensions for the variables we have defined thus far: 

[𝑄̇] =
[J]

[s]
,     [𝑞] =

[J]

[m2][s]
,     [𝐻] =

[J]

[s][K]
,     [ℎ] =

[J]

[m2][s][K]
. 

1.2 THE DIFFERENTIAL EQUATIONS OF BALANCE 
We now wish to derive the very general differential equations of balance that can be used to describe the 

balance of an arbitrary scalar field, denoted […], such that there is a conservation of said scalar (i.e. it 

cannot be created or destroyed). We must first define a few terms. The density, 𝜌, of […] is given by 

[𝜌] =
[… ]

[m3]
. 

We will also define a flux density, 𝐽, given by 

[𝐽] =
[… ]

[m2][𝑠]
. 

If we define a unit normal 𝑛̂, we can then say that 𝐽 ⋅ 𝑛̂ is the amount of […] crossing, per unit a time, a 

surface element of unit area with unit normal in the direction of 𝑛̂. We will also define the rate of formation, 

𝑟, of […] per unit volume as 

[𝑟] =
[… ]

[m3][s]
. 

We can then, logically, state that the balance of […] is given (in words) by 

(total rate of accumulation of [… ] in volume 𝑉)

= (total rate of inflow of [… ] crossing the surface 𝑆)

+ (total rate of production of [… ] produced in 𝑉). 

This is written mathematically as 

∭
𝜕𝜌

𝜕𝑡
𝑑𝑉 = −∯𝐽 ⋅ 𝑛̂ 𝑑𝑆 +∭𝑟𝑑𝑉. 

Applying the divergence theorem 

∭
𝜕𝜌

𝜕𝑡
𝑑𝑉 = −∯div(𝐽) 𝑑𝑆 +∭𝑟𝑑𝑉. 

We can combine all the integrands together as 

∭(
𝜕𝜌

𝜕𝑡
+ div(𝐽) − 𝑟) 𝑑𝑉 = 0. 



Since this must be true over any volume and for any set of integral bounds, the integrand itself must equal 

zero such that 

𝜕𝜌

𝜕𝑡
+ div(𝐽) = 𝑟. 

This is the general equation governing all transport phenomena. In words, it is 

𝜕

𝜕𝑡
(density) + div(flux density) = (rate of production). 

In the case where […] is mass, 𝜌 is the typical density, 𝐽 = 𝜌𝑢⃗⃗ and 𝑟 = 0 (if there is no reaction). Then we 

arrive at the conservation of mass 

𝜕𝜌

𝜕𝑡
+ div(𝜌𝑢⃗⃗) = 0. 

For incompressible fluids, 𝜌 is constant such that div(𝑢⃗⃗) = 0. If instead […] is charge, 𝜌 is charge density, 

𝐽 is current density, and 𝑟 = 0. This leads to the conservation of charge equation. Additionally, if […] is 

solute in a dilute solution, 𝜌 is concentration (often instead denoted 𝑐) and 𝐽 = 𝑐𝑢⃗⃗ + 𝒿, where (lowercase) 

𝒿 is the diffusive flux.  

1.3 MASS TRANSFER EQUATION 

1.3.1 DERIVING THE DIFFUSION EQUATION 
With the previous development, we can say that for diffusion of a solute in dilute solution, we arrive at 

𝜕𝑐

𝜕𝑡
+ div(𝑐𝑢⃗⃗ + 𝒿) = 𝑟. 

This equation can be rearranged to the following form: 

𝜕𝑐

𝜕𝑡
+ div(𝑐𝑢⃗⃗) = −div(𝒿) + 𝑟. 

Using the vector calculus rules in Section 3.3, we can rewrite the above expression as 

𝜕𝑐

𝜕𝑡
+ 𝑢⃗⃗ ⋅ grad(𝑐) + 𝑐 div(𝑢⃗⃗) = −div(𝒿) + 𝑟. 

So far, this analysis has assumed nothing other than a dilute solution. However, now we shall assume that 

the fluid is incompressible (this is true for most liquids, as well as gases moving at velocities much less 

than the speed of sound). This implies that div(𝑢⃗⃗) = 0 such that 

𝜕𝑐

𝜕𝑡
+ 𝑢⃗⃗ ⋅ grad(𝑐) = −div(𝒿) + 𝑟. 

We now employ Fick’s law, which is an empirical relation given by 

𝒿 = −𝐷 grad(𝑐), 

where 𝐷 is the diffusivity, which depends on solute, solvent, and temperature. In the case of a constant 

diffusivity, 

−div(𝒿) = −div(−𝐷 grad(𝑐)) = 𝐷 div(grad(𝑐)) = 𝐷 ∇2(𝑐). 



Plugging this in, 

𝜕𝑐

𝜕𝑡
+ 𝑢⃗⃗ ⋅ grad(𝑐) = 𝐷 ∇2(𝑐) + 𝑟. 

Note again that this only applies for dilute solution, incompressible fluid, and constant diffusivity. If you 

have no flow at all and no chemical reaction, the equation simplifies greatly to 

𝜕𝑐

𝜕𝑡
= 𝐷 ∇2𝑐, 

which is appropriately called the diffusion equation in applied mathematics. For steady (time-independent) 

situations, 

∇2𝑐 = 0, 

which is Laplace’s equation. 

1.3.2 DIVERGENCE OF FLUX DENSITY 
It is also worth noting that if we start with the original mass transfer equation at the beginning of this section 

and only make the assumption of steady-state conditions, we arrive at  

div(𝐽) = 𝑟, 

which is the steady diffusion equation with chemical reaction. An analogous equation can be written in heat 

transfer for the steady heat conduction equation, given by 

div(𝑞⃗) = Φ, 

where Φ is the rate of production of heat (instead of mass). These two equations have particular value since 

they do not rely on Fick’s or Fourier’s laws and the assumptions that underlie them. However, they more 

difficult to solve in practice. 

1.3.3 MASS FRACTION EQUATIONS 
We shall now return to the equation of balance of solute without chemical reaction but with flow: 

𝜕𝑐

𝜕𝑡
+ 𝑢⃗⃗ ⋅ grad(𝑐) = 𝐷 ∇2c. 

We should note that the left-hand terms are the material derivative of concentration, where the material 

derivative is defined as 

𝐷

𝐷𝑡
≡
𝜕

𝜕𝑡
+ 𝑢⃗⃗ ⋅ ∇. 

It gives the rate of change as seen by an “observer” moving with the fluid. We now note that one can define 

concentration via a mass fraction, 𝜑, which is the amount of solute per unit mass of solution. In 

mathematical terms, 

𝜑 =
𝑐

𝜌
, 

where 𝜌 is the density of solution and 𝑐 is the concentration of solute. The diffusive flux density is then 

rewritten as 



𝐽 = 𝜑𝜌𝑢⃗⃗ + 𝒿. 

such that the equation of balance is 

𝜕(𝜑𝜌)

𝜕𝑡
+ div(𝜑𝜌𝑢⃗⃗ + 𝒿) = 𝑟. 

This can be rewritten as 

𝜑
𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝜑

𝜕𝑡
+ 𝜑 div(𝜌𝑢⃗⃗) + 𝜌𝑢⃗⃗ ⋅ grad(𝜑) = −div(𝒿) + 𝑟. 

We now recall from the conservation of mass equation that 

𝜕𝜌

𝜕𝑡
+ div(𝜌𝑢⃗⃗) = 0, 

such that now 

𝜌
𝜕𝜑

𝜕𝑡
+ 𝜌𝑢⃗⃗ ⋅ grad(𝜑) = −div(𝒿) + 𝑟. 

We then see that the left-hand terms are the material derivative of the mass fraction (time density), like we 

saw when we used concentration except now we did not need to assume an incompressible fluid. The 

equation becomes a bit more useful in the following (identical) form 

𝜌
𝐷𝜑

𝐷𝑡
+ div(𝒿) = 𝑟. 

We can generalize our results now to an arbitrary substance […] present in a fluid flow with density 𝜌 and 

velocity 𝑢⃗⃗, and defining its specific density as the amount of […] present per unit mass of fluid, we have 

(fluid density)(rate of gain of [… ], per unit mass, in the moving fluid element)

+ div(diffusive flux density of [… ]) = (rate of production of [… ]) 

1.4 HEAT TRANSFER EQUATION 
To write an analogous equation for heat transfer, we must incorporate the entropy per unit mass, given by 

𝑆̂. With this definition, we can say that 

𝜌𝑇
𝐷𝑆̂

𝐷𝑡
= −div(𝑞⃗) + Φ. 

Thermodynamics provides the following condition as well 

𝑇 𝑑𝑆 = 𝐶𝑃𝑑𝑇 −
𝛽𝑇

𝜌
𝑑𝑃, 

where  

𝛽 ≡
1

𝑉
(
𝜕𝑉

𝜕𝑇
)
𝑃
. 

Plugging this expression into the original differential equation to remove the explicit dependence on entropy 

yields 



𝜌𝐶𝑃
𝐷𝑇

𝐷𝑡
− 𝛽𝑇

𝐷𝑃

𝐷𝑡
= −div(𝑞⃗) + Φ. 

For an ideal gas, 𝛽𝑇 = 1. For a liquid, 𝛽𝑇 ≪ 1 in most cases. Since pressure changes are generally small 

for liquids, we can say the following under this assumption 

𝜌𝐶𝑃 (
𝜕𝑇

𝜕𝑡
+ 𝑢⃗⃗ ⋅ ∇𝑇) = −div(𝑞⃗) + Φ. 

We can then employ the common empirical relationship of Fourier’s Law, given by 

𝑞⃗ = −𝑘∇𝑇 

to get 

𝜌𝐶𝑃 (
𝜕𝑇

𝜕𝑡
+ 𝑢⃗⃗ ⋅ ∇𝑇) = 𝑘∇2𝑇 + Φ 

for constant 𝑘 (thermal conductivity). The units on thermal conductivity are 

[𝑘] =
[J]

[s][m][K]
 

This equation can be rewritten as 

𝜕𝑇

𝜕𝑡
+ 𝑢⃗⃗ ⋅ ∇𝑇 = 𝛼∇2𝑇 +

Φ

𝜌𝐶𝑃
, 

where 𝛼 is the thermal diffusivity given by 

𝛼 ≡
𝑘

𝜌𝐶𝑃
=
[length]2

[time]
. 

This is the basic equation for heat transfer in a fluid.  

In the case of no flow (e.g. for a solid), 

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 +

Φ

𝜌𝐶𝑃
. 

If heat generation is absent and there is no flow, 

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇, 

which is commonly referred to as the heat equation.  

In the case of steady problems with Φ = 0, we get 

𝑢⃗⃗ ⋅ ∇𝑇 = 𝛼∇2𝑇 

In the case of steady problems with no flow (but Φ ≠ 0), 

∇2𝑇 +
Φ

𝑘
= 0 



In the case of steady problems, no flow, and no heat generation, 

∇2𝑇 = 0, 

which is the steady heat conduction equation. 

Now, these equations only work when the temperature change as a function of pressure is very small (as 

with a most liquids and solids). This is not necessarily true for gases. As such, when dealing with an ideal 

gas the appropriate equation would instead be the following 

𝜌𝐶𝑃
𝐷𝑇

𝐷𝑡
=
𝐷𝑃

𝐷𝑡
+ div(𝑘∇𝑇) + Φ, 

which would need to be solved concurrently with the Navier-Stokes equation, continuity equation, and 

equation of state to determine 𝑢⃗⃗, 𝑃, 𝜌, and 𝑇 as a function of 𝑟 and 𝑡. However, if velocities of gas flow are 

much smaller than the speed of sound, pressure variations are quite small, and the heat transfer equations 

for liquids is often appropriate for gases. 

  



2 CANONICAL PROBLEMS IN HEAT AND MASS TRANSFER 
2.1 SHELL ENERGY BALANCE 

2.1.1 DEFINITION 
To solve many problems in heat and mass transfer, the method of shell balances must be employed. 

Effectively, a shell balance (in the context of heat transfer) states that the rate of heat into an infinitely thin 

shell must equal the heat out of that shell. This will be demonstrated with an example below. 

2.1.2 COMMON BOUNDARY CONDITIONS 
There are three very common boundary conditions used in heat transfer. They are as follows. 

- The temperature may be specific at a surface 

- The heat flux normal to a surface (i.e. the normal component of the temperature gradient) may be 

given 

- At interfaces, the temperature and the heat flux normal to the interface must be continuous 

- At a solid-fluid interface, we have that 𝑞 = ℎ(𝑇H − 𝑇C), where 𝑇H > 𝑇C 

2.1.3 HEAT CONDUCTION THROUGH A CYLINDER WITH A SOURCE 
Consider the following scenario. A cylindrical wire is internally heated by an electrical current. The heat 

production per unit volume is given by 𝑆𝑒. The wire has a length 𝐿 and radius 𝑅. The surface of the wire is 

maintained at a temperature 𝑇0. We can assume that the temperature is only a function of 𝑟. 

 

We now consider a cylindrical shell to balance the heat over. There is conduction into the shell at a point 

𝑟, conduction out of the shell at a point 𝑟 + Δ𝑟, and energy production by the electricity within that shell. 

As such, the shell balance should read 

(𝐴𝑞𝑟)|𝑟 − (𝐴𝑞𝑟)|𝑟+Δ𝑟 + 𝑉𝑆𝑒 = 0 

The value of 𝐴 is 2𝜋𝑟𝐿, and the value of 𝑉 is 2𝜋𝑟𝐿Δ𝑟. It is best to think about the area as the projection of 

the cylindrical shell, which is simply the circumference times the length. Similarly, the volume is the 

aforementioned area times the thickness of the shell, Δ𝑟. If we were dealing with spheres, the area term 

would be 4𝜋𝑟2, and the volume would be 4𝜋𝑟2Δ𝑟. With this information, 

(2𝜋𝑟𝐿𝑞𝑟)|𝑟 − (2𝜋𝑟𝐿𝑞𝑟)|𝑟+Δ𝑟 + 2𝜋𝑟Δ𝑟𝐿𝑆𝑒 = 0 



Dividing through by 2𝜋𝐿Δ𝑟 and letting Δ𝑟 → 0 yields 

𝑑(𝑟𝑞𝑟)

𝑑𝑟
= 𝑟𝑆𝑒 

Integrating this expression yields 

𝑞𝑟 =
𝑆𝑒𝑟

2
+
𝐶1
𝑟

 

The boundary condition is that 𝑞𝑟 is finite at 𝑟 = 0, so 𝐶1 = 0 and we have 

𝑞𝑟 =
𝑆𝑒𝑟

2
 

To find the temperature distribution, we use Fourier’s law to get 

−𝑘
𝑑𝑇

𝑑𝑟
=
𝑆𝑒𝑟

2
 

As such, 

𝑇 = −
𝑆𝑒𝑟

2

4𝑘
+ 𝐶2 

The other boundary condition is that 𝑇 = 𝑇0 at 𝑟 = 𝑅, so we then get 

𝑇 − 𝑇0 =
𝑆𝑒𝑅

2

4𝑘
(1 − (

𝑟

𝑅
)
2

) 

We could have solved this problem using the heat transfer equation (with a source) derived in a prior section 

to get the same answer.  

2.2 THE LUMPED CAPACITANCE METHOD 
Consider a body that is spatially uniform and which has a spatially uniform temperature distribution (e.g. 

if it is small and has negligible internal thermal resistance) at a value 𝑇0. Assume that the body is in direct 

contact with a large heat source (e.g. the atmosphere) at a temperature 𝑇𝑎 that does not change temperature. 

Also, assume that all material properties (e.g. heat capacity), the surface area (𝐴), the volume (𝑉), and ℎ̅ 

(which is not a material property) are known. We wish to describe how the temperature of the body changes 

with time. 

To do so, we first note that the heat flux can be described by 

𝑄̇ = 𝐻(𝑇𝑎 − 𝑇) 

at a given point in time if we wish to describe the temperature flow from the heat source to the body. Since 

we have the value of ℎ̅ and the area we can say that 

𝑄̇ = ℎ̅𝐴(𝑇𝑎 − 𝑇). 

Recall from thermodynamics that heat capacity, 𝐶, is defined as 

𝐶 ≡
𝑑𝑄

𝑑𝑇
. 



Typically, we wish to refer to a specific heat capacity, which is defined as  

𝐶𝑝 ≡
𝐶

𝜌𝑉
, 

Such that 

𝑑𝑄 = 𝐶𝑝𝜌𝑉𝑑𝑇 

using the previous two equations. We now have an expression for 𝑄̇ as well as 𝑑𝑄. We can use the 

relationship that 

𝑑𝑄 = 𝑄̇𝑑𝑡 

to relate the two expressions. As such, 

𝐶𝑝𝜌𝑉 𝑑𝑇 = ℎ̅𝐴(𝑇𝑎 − 𝑇) 𝑑𝑡. 

Solving for 𝑑𝑇 yields 

𝑑𝑇 =
ℎ̅𝐴(𝑇𝑎 − 𝑇)

𝐶𝑝𝜌𝑉
𝑑𝑡. 

For convenience, we define a timescale 𝜏 as 

𝜏 ≡
𝐶

𝐻
=
𝐶𝑝𝜌𝑉

ℎ̅𝐴
, 

which has units of time. This makes the differential equation become 

𝑑𝑇 =
𝑇𝑎 − 𝑇

𝜏
 𝑑𝑡. 

We now define a dimensionless temperature of 

θ ≡
𝑇 − 𝑇𝑎
𝑇0 − 𝑇𝑎

. 

This means that at 𝑡 = 0, 𝜃 = 1. Further, as the body heats up, 𝑇 → 𝑇𝑎 and 𝜃 → 0. We now divide the 

differential equation by 𝑇0 − 𝑇𝑎 on both sides to get 

𝑑𝑇

𝑇0 − 𝑇𝑎
=
𝑇𝑎 − 𝑇

𝑇0 − 𝑇𝑎

𝑑𝑡

𝜏
. 

We note that the left-hand side is equivalent to 𝑑𝜃, and the non-differential terms on the right-right side are 

−𝜃. We can then say 

𝑑𝜃 = −
𝜃

𝜏
𝑑𝑡. 

Separating the variables to 

1

𝜃
𝑑𝜃 = −

1

𝜏
𝑑𝑡 



makes the problem easily integrated: 

ln(𝜃) = −
𝑡

𝜏
+ 𝐾 

where 𝐾 is a constant of integration. If we apply the initial condition of 𝑡 = 0 and 𝜃 = 1, we find 𝐾 = 0, 

and thus 

𝜃 = exp (−
𝑡

𝜏
). 

This describes the temperature as a function of time. 

2.3 ONE-DIMENSIONAL SLAB 
One-dimensional problems arise when the geometry and the boundary conditions are such that one can find 

a coordinate system in which 𝑇 depends on a single coordinate only. For example, consider a plane (i.e. 

wall) of “infinite extent” in the 𝑦 and 𝑧 directions (commonly referred to as a “slab” geometry) with 

temperature at each side being fixed. There are two boundary conditions for 𝑇(𝑥): 𝑇(0) = 𝑇0 and 𝑇(𝐿) =

𝑇𝐿. Assuming a steady solution, no flow, and no heat generation, we arrive at 

∇2𝑇 = 0, 

which in this coordinate system is 

𝑑2𝑇

𝑑𝑥2
= 0 

and has the solution 

𝑇 = 𝐶1 + 𝐶2𝑥. 

Employing the boundary conditions yields 

𝑇 = 𝑇0 + (𝑇𝐿 − 𝑇0)
𝑥

𝐿
. 

Using Fourier’s Law allows us to also note that 

𝑞𝑥 = −𝑘
𝑑𝑇

𝑑𝑥
= −(𝑇𝐿 − 𝑇0)

𝑘

𝐿
 

An analogous problem can be set up for thin film diffusion. Technically, it could not be solved in this way 

for diffusion through a thick film since a thick film would take a long time to reach diffusive steady state. 

2.4 COMPOSITE MATERIALS 

2.4.1 CONCEPT OF THERMAL RESISTANCE 
From Fourier’s Law (with the assumption ∇𝑇 ≈ Δ𝑇/𝐿), 

𝑞 =
𝑘

𝐿
Δ𝑇 → Δ𝑇 = 𝑄̇

𝐿

𝑘𝐴
 

We can treat this like Ohm’s Law where Δ𝑇 is analogous to a voltage drop, 𝑄̇ is analogous to a current, and 

𝐿/𝑘𝐴 is a resistance. Then, we can define a thermal resistance for conduction as 



𝑅cond =
𝐿

𝑘𝐴
 

where 𝐿 is the length in the direction parallel to heat flow and 𝐴 is the cross-sectional area perpendicular to 

heat flow. 

We can derive a similar expression for convection. The equation for convection is  

𝑞 = ℎ̅Δ𝑇 → Δ𝑇 = 𝑄̇
1

ℎ̅𝐴
 

Then, we can define a thermal resistance for convection as 

𝑅conv =
1

ℎ̅𝐴
 

With this information, we can find a total resistance for a composite material by treating these resistances 

like those of a circuit. 

For resistances in series 

𝑅tot =∑𝑅𝑖
𝑖

 

For resistances in parallel, 

1

𝑅tot
=∑

1

𝑅𝑖
𝑖

 

The effective thermal conductivity in a given direction can be found from  

𝑘eff =
𝐿

𝑅tot𝐴
 

which can then be used to compute the heat flow rate via 

𝑄̇ =
Δ𝑇

𝑅tot
 

2.4.2 THERMAL RESISTANCES IN SERIES 
Consider a material consisting of alternating layers in the 𝑧 direction. This composite material is composed 

of two different materials, material 1 and material 2, that alternate sequentially and have thicknesses 𝑏1 and 

𝑏2. The goal is to find the effective thermal conductivity through this composite material. 

Recall that for conduction through the composite, 

𝑞𝑧 =
𝑘

𝐿
Δ𝑇 

where Δ𝑇 ≡ 𝑇𝑖 − 𝑇𝑓 and 𝐿 is a thickness (measured on a path parallel to the heat flow). The net temperature 

change across the two materials is going to be Δ𝑇 = Δ𝑇1 + Δ𝑇2, the thickness is going to be 𝐿 = 𝑏1 + 𝑏2, 

and the 𝑘 is going to be some effective 𝑘𝑧𝑧 if we consider heat flow in the 𝑧 direction for now. Therefore, 



Δ𝑇 =
𝑏1 + 𝑏2
𝑘𝑧𝑧

𝑞𝑧 

In addition, in each of the two slabs we have 

Δ𝑇1 =
𝑏1
𝑘1
𝑞𝑧 

Δ𝑇2 =
𝑏2
𝑘2
𝑞𝑧 

Therefore, using the fact that Δ𝑇 = Δ𝑇1 + Δ𝑇2, 

𝑏1 + 𝑏2
𝑘𝑧𝑧

𝑞𝑧 =
𝑏1
𝑘1
𝑞𝑧 +

𝑏2
𝑘2
𝑞𝑧 

Solving for the effective conductivity 

𝑘𝑧𝑧 =
𝑏1 + 𝑏2
𝑏1
𝑘1
+
𝑏2
𝑘2

 

This could have been solved via the thermal resistance method described before. In our example with 

materials in series, 

𝑅tot =∑𝑅𝑖
𝑖

= 𝑅1 + 𝑅2 =
𝑏1
𝑘1𝐴

+
𝑏2
𝑘2𝐴

=
1

𝐴
(
𝑏1
𝑘1
+
𝑏2
𝑘2
) 

This then means that 

𝑘𝑧𝑧 =
𝑏1 + 𝑏2
𝑏1
𝑘1
+
𝑏2
𝑘2

 

as we got before. 

2.4.3 THERMAL RESISTANCES IN PARALLEL 
We now consider our prior example but now consider the heat flux in the 𝑞𝑥𝑥 and 𝑞𝑦𝑦 directions, such that 

the materials are parallel to the heat flow. The thermal resistance is as follows (note that in this direction, 𝐿 

is a constant but 𝐴 is not due to the differences in thickness) 

1

𝑅tot
=∑

1

𝑅𝑖
𝑖

=
1

𝑅1
+
1

𝑅2
=
𝑘1𝐴1
𝐿

+
𝑘2𝐴2
𝐿

=
𝑊

𝐿
(𝑘1𝑏1 + 𝑘2𝑏2) 

Therefore, 

𝑘𝑥𝑥 = 𝑘𝑦𝑦 =
𝑊

𝐿
(𝑘1𝑏1 + 𝑘2𝑏2) (

𝐿

𝐴
) =

𝑘1𝑏1 + 𝑘2𝑏2
𝑏1 + 𝑏2

 

2.4.4 THERMAL RESISTANCES WITH CONVECTION 
We now consider two materials in series that are oriented with heat flow in the 𝑧 direction. The first material 

is some standard material with a thickness 𝑏𝑑, and the second material is water that moves through a 

material with thickness 𝑏𝑓. The water moves very quickly (i.e. is highly turbulent). The two materials 



alternate sequentially. We can model them as thermal resistors in series, but the first material must use heat 

conduction whereas the second relies on heat convection. As such, 

𝑅tot =∑𝑅𝑖
𝑖

=
𝑏𝑑
𝑘𝑑𝐴

+
1

ℎ̅𝑓𝐴
=
1

𝐴
(
𝑏𝑑
𝑘𝑑
+
1

ℎ̅𝑓
) 

Therefore, 

𝑘𝑧𝑧 =
𝑏𝑑 + 𝑏𝑓
𝑏𝑑
𝑘𝑑
+
1

ℎ̅𝑓

 

If we assume that ℎ̅𝑓 ≫ 𝑏𝑑/𝑘𝑑 due to the highly turbulent nature of the fluid, then the equation simplifies 

to 

𝑘𝑧𝑧 =
𝑘𝑑(𝑏𝑑 + 𝑏𝑓)

𝑏𝑑
 

2.5 RECTANGULAR FIN 
Consider the fin shown below. Assume that air, at a temperature 𝑇a, surrounds the fin and that the fin is 

infinitely long in the 𝑦 direction. Also assume that the left-hand base of the fin in the below image is 

maintained at a fixed temperature, 𝑇0.  

 

In theory, we now have all the information we need to solve the problem, but the solution will be quite 

messy. We can make an assumption that we are really only interested in variations in the average 

temperature, 〈𝑇〉. Assume that 〈𝑇〉 is a function of 𝑥 only. We can then write that the energy balance is 

(total heat flux in through the cross section in 𝑥)

= (total heat flux out through the cross section at 𝑥 + Δ𝑥)

+ (total heat flux out to the fluid through surfaces at 𝑧 = ± 𝑏/2) 

In mathematical form, this is 

𝑏〈𝑞𝑥〉|𝑥 = 𝑏〈𝑞𝑥〉|𝑥+Δ𝑥 + 2ℎ(〈𝑇〉 − 𝑇a)Δ𝑥 



Divide through by Δ𝑥 and let Δ𝑥 → 0 to yield 

−𝑏
𝑑〈𝑞𝑥〉

𝑑𝑥
= 2ℎ(〈𝑇〉 − 𝑇a) 

We know from Fick’s Law that  

〈𝑞𝑥〉 = −𝑘
𝑑〈𝑇〉

𝑑𝑥
 

so  

𝑏𝑘
𝑑2〈𝑇〉

𝑑𝑥2
= 2ℎ(〈𝑇〉 − 𝑇a) 

This can be rewritten as  

𝑑2〈𝑇〉

𝑑𝑥2
−
2ℎ

𝑏𝑘
(〈𝑇〉 − 𝑇a) = 0 

We now define the following parameters: 

Θ ≡
〈𝑇〉 − 𝑇a
𝑇0 − 𝑇a

 

1

𝜆2
≡
2ℎ

𝑘𝑏
 

With these definitions, we can state that 

𝑑2Θ

𝑑𝑥2
=
Θ

𝜆2
 

The general solution of this equation is the following, which can be determined by assuming a solution of 

the form Θ = 𝐶𝑒𝑚𝑥 and solving for the characteristics: 

Θ = 𝐴𝑒
−
𝑥
𝜆 + 𝐵𝑒

𝑥
𝜆 

where 𝐴 and 𝐵 are constants of integration. We know that the boundary conditions are Θ(𝑥 = ∞) = 0 and 

Θ(𝑥 = 0) = 1. To be clear, even though we did not assume that the fin has a length 𝐿 = ∞, we can still 

have a boundary condition at 𝑥 = ∞ so long as the length is long enough that the exponential function 

behaves almost as if you were at 𝑥 = ∞. With these boundary conditions, the solution to the equation is 

simply  

Θ = 𝑒−𝑥/𝜆 

This solution is only approximate due to the aforementioned assumptions. The fin obviously cannot actually 

be infinitely long in 𝑦. We also made the assumption of an 𝑥 = ∞ boundary condition at 𝑥 = 𝐿. In addition, 

we assumed that 𝑇 ≈ 〈𝑇〉. This last approximation is only valid if 

ℎ𝑏

2𝑘
≪ 1 



This is commonly referred to as the Biot number, which can be more generally written as the following 

(where 𝐿 is a characteristic length, not the 𝐿 used in the problem statement): 

Bi ≡
ℎ𝐿

𝑘
 

Oftentimes, this characteristic length is the volume of the body divided by its surface area. 

2.6 CYLINDRICAL ROD 
We now consider a cylindrical rod. The left end of the rod is fixed at a temperature 𝑇1. The right end of the 

rod is fixed at a temperature 𝑇2. For the purposes of this problem, we will set 𝑇1 > 𝑇2. In addition, the rod 

is surrounded by ambient air at a temperature 𝑇𝑎. There is also a heat source given by Φ. We wish to find 

the temperature distribution in the rod. Assume the rod has a radius 𝑅 and is oriented along the 𝑧 axis in 

cylindrical coordinates. The length of the rod is given by 𝐿. 

We start with a shell balance. Of course, it will be a cylindrical shell balance that takes into account the 

heat flux into the rod from the left, out of the rod from the right, out of the rod into the air, and into the rod 

from the source. It will take the following form.  

(𝜋𝑅2𝑞𝑧)|𝑧 + 𝜋𝑅
2Δ𝑧Φ = (𝜋𝑅2𝑞𝑧)|𝑧+Δ𝑧 + 2𝜋𝑅Δ𝑧ℎ(〈𝑇〉 − 𝑇𝑎) 

where I have assumed that the temperature at 𝑧 = ±𝑟 is approximately equal to 〈𝑇〉. Dividing by Δ𝑧 and 

letting Δ𝑧 → 0 yields 

−
𝑑𝑞𝑧
𝑑𝑧

+ Φ =
2ℎ(〈𝑇〉 − 𝑇𝑎)

𝑅
 

Substituting in for Fick’s law yields 

𝑑2〈𝑇〉

𝑑𝑧2
+
Φ

𝑘
=
2ℎ(〈𝑇〉 − 𝑇𝑎)

𝑘𝑅
 

We have the boundary condition that at 𝑧 = 0, 〈𝑇〉 = 𝑇1 and at 𝑧 = 𝐿, 〈𝑇〉 = 𝑇2. If we define the diameter 

as 𝑑 = 2𝑅 then we can say 

𝑑2〈𝑇〉

𝑑𝑧2
−
4ℎ

𝑘𝑑
(〈𝑇〉 − (𝑇𝑎 +

𝑑

4ℎ
Φ)) = 0 

This form allows us to get an equation like the one found in the rectangular fin problem. We now introduce 

the following dimensionless variables: 

Θ ≡
〈𝑇〉 − (𝑇𝑎 +

𝑑
4ℎ
Φ)

𝑇1 − (𝑇𝑎 +
𝑑
4ℎ
Φ)

 

1

𝜆2
≡
4ℎ

𝑘𝑑
 

Then we get the equation 

𝑑2Θ

𝑑𝑧2
−
Θ

𝜆2
= 0 



This equation can once again be integrated to show 

Θ = 𝐶1𝑒
𝑧
𝜆 + 𝐶2𝑒

−
𝑧
𝜆 

For our purposes, it will be easier to rewrite this with hyperbolic trigonometric functions as 

Θ = 𝐴 cosh (
𝑧

𝜆
) + 𝐵 sinh (

𝑧

𝜆
) 

We have the new boundary conditions of at 𝑧 = 0, Θ = 1 and at 𝑧 = 𝐿, Θ =
(𝑇2−(𝑇𝑎+

𝑑

4ℎ
Φ))

𝑇1−(𝑇𝑎+
𝑑

4ℎ
Φ)

≡ Θ𝐿. The term 

𝑇𝑎 +
𝑑

4ℎ
Φ has an important meaning. It is the temperature of a long rod with electrical heating that is 

suspended in the air between non-conducting walls so that it exchanges heat with the air only. This can be 

proven by simply removing the heat flux terms in the shell balance and solving for 〈𝑇〉. With the 

aforementioned boundary conditions, we get 

Θ = cosh (
𝑧

𝜆
) +

Θ𝐿 − cosh (
𝐿
𝜆
)

sinh (
𝐿
𝜆
)

sinh (
𝑧

𝜆
) 

If the rod is very long (i.e. 𝐿 ≫ 𝜆), we expect that the influence of the walls do not extend very far into the 

rod, so the main part of the rod is really at 𝑇𝑎 +
𝑑

4ℎ
Φ (i.e. Θ = 0).  

2.6.1 LARGE INTERNAL RESISTANCE 
The second case we can consider is when the internal resistance is much greater than the external resistance. 

In this case, 

ℎ ≫
𝑘

𝐿
 

which is equivalent to saying Bi ≫ 1. Upon immersion, the surface temperature instantaneously becomes 

equal to the temperature of the fluid, say 𝑇1, and remains at this value. Meanwhile, the inside temperature 

is rising slowly, “propagating” from the boundary to the center. For a large body and slow propagation 

time, there will be an initial period of time during which the propagation front is still in the “skin layer” far 

from the center, and so the process can be approximated as transient heat conduction in a semi-infinite slab. 

The surface will can be treated as flat even if there is curvature to it. 

2.7 SEMI-INFINITE SLAB 

2.7.1 MATHEMATICAL SOLUTION 
We now consider transient heat conduction into a semi-infinite slab. Technically, the only requirement is 

that one dimension is very large or there is very low thermal conductivity such that the distance heat has 

diffused is small compared to the length of the body. The scenario we consider has said body starting at a 

temperature 𝑇0 and then jumping up immediately to 𝑇1 on one end. We will only consider a temperature 

gradient in the 𝑥 direction of this material. Our initial and boundary conditions are 𝑇 = 𝑇0 at 𝑡 = 0, 𝑥 ≤

𝑥 < ∞ and 𝑇 = 𝑇1 at 𝑡 > 0, 𝑥 = 0. We also know that as 𝑥 → ∞, 𝑡 → ∞ we have 𝑇 → 𝑇0. We define 𝑥 here 

as the distance into the material such that 𝑥 = 0 is at the interface. 

We know that  



𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 

which becomes in this problem 

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
 

We can define a dimensionless temperature by 

Θ ≡
𝑇 − 𝑇0
𝑇1 − 𝑇0

 

to get a new equation of 

𝜕Θ

𝜕𝑡
= 𝛼

𝜕Θ2

𝜕𝑥2
 

The new conditions are Θ = 0 at 𝑡 = 0, 0 ≤ 𝑥 < ∞ and Θ = 1 at 𝑡 > 0, 𝑥 = 0 and the condition of Θ → 0 

as 𝑥 → ∞ and 𝑡 → ∞. We use the method of similarity solutions to define a parameter 

𝜂 ≡
𝑥

√4𝛼𝑡
 

such that 

𝑑2Θ

𝑑𝜂2
+ 2𝜂

𝑑Θ

𝑑η
= 0 

We again have a new set of boundary conditions: 𝜃 = 0 at 𝜂 = ∞, Θ = 1 at 𝜂 = 0, and Θ → 0 at 𝜂 = ∞. 

The first and third condition are redundant. We can integrate the above equation to get  

Θ = 1 −
2

√𝜋
∫𝑒−𝜉

2
𝑑𝜉

𝜂

0

= 1 − erf(𝜂) = erfc(𝜂) 

where  

erf(𝜂) ≡
2

√𝜋
∫ 𝑒−𝜉

2
𝑑𝜉

𝜂

0

 

and  

erfc(𝜂) ≡ 1 − erf(𝜂) 

We now have an expression for the temperature difference as a function of time. It is important to know 

that erf(0.5) ≈ 0.52 and erf(1.8) ≈ 0.99. The maximum value of erf(𝜂) is 1 and the minimum is 0, which 

makes sense with our definition of Θ. We also note that 

𝑑

𝑑𝜂
erf(𝜂) =

2

√𝜋

𝑑

𝑑𝜂
∫𝑒−𝜉

2
𝑑𝜉

𝜂

0

=
2

√𝜋
 𝑒−𝜂

2
 

Therefore,  



𝑑

𝑑𝜂
erf(𝜂)|

𝜂=0

=
2

√𝜋
 

This is useful in finding the heat flux into the medium through the interface. We then perform a bit of 

algebra (noting that 𝑥 = 𝜂√4𝛼𝑡) 

𝑞𝑥|𝑥=0 = −𝑘
𝜕𝑇

𝜕𝑥
|
𝑥=0

= −𝑘(𝑇1 − 𝑇0)
𝜕Θ

𝜕𝑥
|
𝑥=0

= −
𝑘(𝑇1 − 𝑇0)

√4𝛼𝑡

𝑑Θ

𝑑𝜂
|
𝜂=0

= −
𝑘(𝑇1 − 𝑇0)

√4𝛼𝑡
(−

2

√𝜋
) 

This leads us to the final result for the heat flux into the medium, which is 

𝑞𝑥|𝑥=0 =
𝑘

√𝜋𝛼𝑡
(𝑇1 − 𝑇0) 

We define the denominator as the thickness of the thermal boundary layer 

𝛿 = √𝜋𝛼𝑡 

Such that 

𝑞𝑥|𝑥=0 =
𝑘

𝛿
(𝑇1 − 𝑇0) 

2.7.2 ESTIMATING THE HEAT TRANSFER COEFFICIENT 
With the prior solution, we can approximate the heat transfer coefficient as  

ℎ =
𝑘

𝛿
 

such that it scales with 𝑘/√𝛼𝑡. Specifically, this applies when we are looking for the heat transfer coefficient 

on an object that can be treated using the fin approximation. As a result, it is important to know about values 

of 𝑘 and 𝛼 for common materials. For steel, 𝑘 = 60
W

m⋅K
 and 𝛼 = 20

mm2

𝑠
. For water, 𝑘 = 0.6

W

m⋅K
 and 𝛼 =

0.15
mm2

𝑠
. For air, 𝑘 = 0.02

W

m⋅K
 and 𝛼 = 20

mm2

𝑠
. We can also generalize the results to say that metals have 

𝑘 = 𝑂(102) and 𝛼 = 𝑂(101) − 𝑂(1012), construction materials have 𝑘 = 𝑂(1) and 𝛼 = 𝑂(1), water has 

𝑘 = 𝑂(1) and 𝛼 = 𝑂(10−1), and air has 𝑘 = 𝑂(10−2) and 𝛼 = 𝑂(101) using the aforementioned units. 

2.7.3 RATIOS OF THERMAL CONDUCTIVITY AND THERMAL DIFFUSIVITY 
Now let us consider the scenario of touching two very different materials – steel and wood. We wish to 

explain why touching steel feels colder than wood even if both are at the same temperature. We will assume 

𝑇𝑏 is the temperature of the skin, 𝑇𝑜 the temperature of the object, and 𝑇𝑖 the temperature of the interface. 

We note that the heat flux must be equal on both sides of this interface. In addition, if we consider a 

sufficiently short initial, the solution can be modeled as diffusion from a flat boundary (we can ignore the 

curvature of either object). Then, 

𝑘1

√𝜋𝛼1𝑡
(𝑇𝑏 − 𝑇𝑖) =

𝑘2

√𝜋𝛼2𝑡
(𝑇𝑖 − 𝑇𝑜) 

such that 

𝑘1

√𝛼1
(𝑇𝑏 − 𝑇𝑖) =

𝑘2

√𝛼2
(𝑇𝑖 − 𝑇𝑜) 



If we define 

𝛽 ≡
𝑘2/√𝛼2
𝑘1/√𝛼1

 

then 

𝑇𝑖 =
𝑇𝑏 + 𝛽𝑇𝑜
1 + 𝛽

 

As such, if 𝛽 ≪ 1 (e.g. for wood) then 𝑇𝑖 ≈ 𝑇𝑏. If 𝛽 ≫ 1 (e.g. for steel) then 𝑇𝑖 ≈ 𝑇𝑜. 

2.8 TRANSIENT HEAT CONDUCTION 

2.8.1 NEGLIGIBLE INTERNAL RESISTANCE 
Recall that the transient heat conduction equation with a source term is given by 

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 +

Φ

𝜌𝐶𝑃
 

We can break this down into two subcases.  

The first case is when internal resistance is much smaller than the external resistance. For example, this 

may be for a highly conducting body immersed into a fluid. We first approximate the heat transfer 

coefficient as a constant, specifically  

ℎ =
𝑘

𝐿
 

where 𝐿 is some length characteristic of the body (usually the smallest length dimension). The fact that 

there is negligible internal resistance means that 

ℎ ≪
𝑘

𝐿
 

which is the same as saying Bi ≪ 1. In this case, most of the temperature variation occurs in the fluid (in 

the boundary layer), while the temperature within the body is nearly spatially uniform, though changing 

with time. Then the surface temperature is nearly 〈𝑇〉. This is the same type of problem we solved earlier 

where we had an object immersed in an infinite medium. The solution to that problem was simply 

Θ = 𝑒−
𝑡
τ 

where  

𝜏 ≡
𝜌𝐶𝑃𝑉

ℎ𝐴
 

We see that the solution is not dependent on 𝑘. This is because it dropped out when we approximated 𝑇 ≈

〈𝑇〉 since that is equivalent to assuming 𝑘 → ∞ (no internal resistance).  

2.8.2 SIGNIFICANT INTERNAL RESISTANCE 
On the other hand, if there is significant internal resistance such that 



ℎ ≫
𝑘

𝐿
 

then the system is well-described by the semi-infinite slab solution described before. This also means that 

the heat transfer coefficient can be approximated by  

ℎ =
𝑘

𝛿
=

𝑘

√𝜋𝛼𝑡
 

These two limiting cases are incredibly powerful in the study of heat transfer since they allow for the 

determination of heat transfer coefficients, which are not material properties. 

2.9 INFINITE CYLINDER PARADOX 
Let us first consider a sphere of radius 𝑅 with an internal heat source that is surrounded by fluid of infinite 

extent. The heat transfer equation we wish to use then is 

∇2𝑇 = 0 

if we are only considering the temperature of the fluid (not the temperature inside the sphere where the 

source term would matter). If we assume angular symmetry, then 

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕Θ

𝜕𝑟
) = 0 

if we define a dimensionless temperature difference of  

Θ =
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞

 

We specifically define the temperature difference in this way so that it has the proper limiting behavior of 

being zero at 𝑟 → ∞ and one at 𝑟 = 𝑅. With this, we can integrate and find the solution to the temperature 

field in the fluid, which is 

Θ =
𝑅

𝑟
 

The heat flux at the surface of the sphere can be found via Fourier’s law to be 

𝑞𝑟|𝑟=𝑅 = −𝑘
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅

= −𝑘(𝑇𝑠 − 𝑇∞)
𝜕Θ

𝜕𝑟
|
𝑟=𝑅

 

We know from before that 

𝜕Θ

𝜕𝑟
|
𝑟=𝑅

= −
𝑅

𝑟2
|
𝑟=𝑅

= −
1

𝑅
 

Therefore, 

𝑞𝑟|𝑟=𝑅 =
𝑘

𝑅
(𝑇𝑠 − 𝑇∞) 

We then see that we can model the heat transfer coefficient in this problem via  

ℎ =
𝑘

𝑅
 



The radius is then the appropriate unit of length to scale the thermal conductivity by to get the heat transfer 

coefficient. It should also be noted that 𝑘 is out of the external medium (the fluid in this problem). 

Now, we can try to repeat this problem for an infinite cylinder in a fluid. The problem is, it will be 

impossible to obtain an answer, just like how there is no solution for the analogous problem in fluid 

mechanics (called Stokes’ paradox). The result of this paradox is that unlike most things, for an infinite 

cylinder, it is not the radial position away that influences how hot the fluid is but rather the distance away 

in units of length that make the difference. As an example, consider a needle. A needle can be modeled as 

an infinite cylinder since it has a length that is far larger than its thickness, so it appears infinite in the length 

dimension. If the needle is somehow heated up and put into a fluid, the fluid will be nearly as hot as the 

needle a few units of 𝑅 away from the needle (this is not the case for the sphere problem, where we saw the 

heat flux decay with 1/𝑅). However, the fluid temperature will drop significantly just a few units of 𝐿 away 

from the cylinder. 

2.10 ORDER OF MAGNITUDE ANALYSIS 
We now wish to write an expression for 𝛿 using only an order of magnitude analysis and no other 

assumptions (so that we can make a statement beyond just the infinite slab problem). Ideally, we should get 

a similar solution. To do so, we start with the heat equation: 

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
 

We can model the first derivatives as the following over a sufficiently small distance 𝑥 = 𝛿: 

𝜕𝑇

𝜕𝑡
∼
𝑇1 − 𝑇0
𝑡

 

𝜕𝑇

𝜕𝑥
∼
𝑇1 − 𝑇0
𝛿

 

The second spatial derivative is easily obtainable from this information: 

𝜕2𝑇

𝜕𝑥2
∼
1

𝛿
(
𝜕𝑇

𝜕𝑥
) ∼

𝑇1 − 𝑇0
𝛿2

 

Therefore, the heat equation can be approximated by 

𝑇1 − 𝑇0
𝑡

≈
𝛼(𝑇1 − 𝑇0)

𝛿2
 

which simplifies to 

𝛿 ∼ √𝛼𝑡 

This is the same result as the infinite slab solution (except for the √𝜋 term). This equation for the boundary 

layer is an incredibly important result of transport phenomena. In mass transfer, the equation is analogously 

𝛿 ∼ √𝐷𝑡 

2.11 QUASI STEADY STATE HYPOTHESIS 

2.11.1 ONE-DIMENSIONAL SLAB WITH SINUSOIDAL BOUNDARY TEMPERATURE 
Recall the problem of the one-dimensional slab with the solution  



𝑞𝑥 =
𝑘

𝐿
(𝑇1 − 𝑇2) 

Now imagine that one of the boundary temperatures varies with time, such that 

𝑇1 = 𝑇2 + 𝐴 sin(𝜔𝑡) 

Can we then plug in this expression into 𝑞𝑥 and say that is the flux? The answer, generally speaking, is no. 

The solution is not at steady state and varies with time. However, there are limiting cases in which it is 

possible to use the linear profile as a reasonable approximation. The main criterion is that the time scale of 

change in external conditions is much greater than the internal relaxation time. In our problem, it is when 

1

𝜔
≫
𝐿2

𝛼
 

where 1/𝜔 is the period of oscillation and 𝜏 ≡ 𝐿2/𝛼 is the internal relaxation time (obtained from the prior 

result of 𝛿 ∼ √𝛼𝑡). If this condition applies, one can use the quasi-steady state assumption (QSSA) and use 

the linear profile.  

2.11.2 DISSOLUTION OF SPHERE INTO FLUID 
Consider a solid sphere of initial radius 𝑎 that dissolves in a large body of a fluid at rest. The mass 

concentration of the sphere material in the fluid in the state of equilibrium is 𝜌𝑒𝑞. The value of 𝜌𝑒𝑞 is much 

less than 𝜌𝑠, where 𝜌𝑠 is the mass density of the same material in the solid state. Find the time of complete 

dissolution of the sphere. 

The characteristic time in the case of the sphere problem is 𝜏 = 𝑎2/𝐷. This value will be much smaller than 

the time of dissolution under the QSSA. Let us define 𝑏(𝑡) as the radius of the sphere at a time 𝑡. Of course, 

𝑏 ≤ 𝑎 for dissolution into the fluid. In the fluid (i.e. 𝑟 > 𝑎 in spherical coordinates with the origin located 

at the center of the sphere), we have 

𝜌 = 𝜌𝑒𝑞
𝑏

𝑟
 

This is analogous to the case of the heated sphere in the infinite medium, which had the solution Θ = 𝑅/𝑟. 

We now note that the flux is given by Fick’s law as 

𝑗 = −𝐷 grad(𝜌) 

Therefore, at the interface (𝑟 = 𝑏), 

𝑗|𝑟=𝑏 = −𝐷
𝜕𝜌

𝜕𝑟
|
𝑟=𝑏

= −𝐷𝜌𝑒𝑞𝑏 (−
1

𝑟2
)|
𝑟=𝑏

=
𝐷

𝑏
𝜌𝑒𝑞 

We now must consider the shrinking of the solid sphere. We start with a mass balance: 

𝑗 𝑑𝑆 𝑑𝑡 = −𝜌𝑠 𝑑𝑏 𝑑𝑆 

This then allows us to say that 

𝑑𝑏

𝑑𝑡
= −

𝑗

𝜌𝑠
 

which, when plugging in 𝑗, yields 



𝑑𝑏

𝑑𝑡
= −

𝐷

𝑏

𝜌𝑒𝑞
𝜌𝑠

 

Therefore, we can integrate from 𝑡 = 0 to 𝑡 = 𝑡diss and 𝑏 = 𝑎 to 𝑏 = 0 to arrive at 

𝑡diss =
𝑎2

2𝐷
 
𝜌𝑠
𝜌𝑒𝑞

 

2.11.3 DIFFUSION WITH IRREVERSIBLE REACTION 
Assume that a species is consumed via fast, irreversible first-order reaction in a stagnant fluid. This means 

that our governing equation is  

𝜕𝑐

𝜕𝑡
= 𝐷 ∇2(𝑐) − 𝑘1𝑐 

We know that 𝑐 = 𝑐𝑏 at the boundary (where 𝑐𝑏 is the concentration in thermodynamic equilibrium with 

the concentration of the same species across the boundary), and 𝑐 = 0 far from the boundary (at ∞). The 

solution is simple if the boundary is flat and extends to ∞ in 𝑦 and 𝑧, or the flux in 𝑦 and 𝑧 is zero due to 

the presence of walls. The solution is also simple even if the boundary has an arbitrary shape, so long as 

the reaction is fast enough that the thickness of the boundary layer where the concentration is significant is 

much less than the radius of curvature of the boundary. Then, 

0 = 𝐷
𝜕2𝑐

𝜕𝑥2
− 𝑘1𝑐 

The boundary conditions are 𝑐|𝑥=0 = 𝑐𝑏 and 𝑐|𝑥→∞ → 0. This then leads to  

𝜕2𝑐

𝜕𝑥2
−
𝑐

𝜆2
= 0 

where 𝜆 ≡ (
𝐷

𝑘1
)

1

2
, which can be integrated to yield 

𝑐 = 𝑐𝑏𝑒
−
𝑥
𝜆 

with a flux at the surface of  

𝑗𝑥|𝑥=0 = −𝐷
𝜕𝑐

𝜕𝑥
|
𝑥=0

=
𝐷

𝜆
𝑐𝑏 = √𝐷𝑘1𝑐𝑏 

2.11.4 DISSOLUTION OF SPHERE WITH IRREVERSIBLE REACTION 
If we model the dissolution and reaction of a sphere in a fluid using the “flat Earth approximation”, we can 

use the same procedure as before. This means that the flux at the surface is 

𝑗|𝑟=𝑏 = √𝐷𝑘1𝜌eq 

Then, to get the time of dissolution, we use the same mass balance as before of 

𝑗 𝑑𝑆 𝑑𝑡 = −𝜌𝑠 𝑑𝑏 𝑑𝑆 

Plugging in the flux yields 

√𝐷𝑘1𝜌eq𝑑𝑡 = −𝜌𝑠 𝑑𝑏 



Therefore, we can integrate from 𝑡 = 0 to 𝑡 = 𝑡diss and 𝑏 = 𝑎 to 𝑏 = 0 to arrive at 

𝑡diss =
𝑎

√𝐷𝑘1

𝜌𝑠
𝜌eq

 

The value of √𝐷/𝑘1 is the thickness of the layer where diffusion and reaction occurs. If we wanted to solve 

the identical problem for a cylinder, we could in theory use the same procedure and answer if we once again 

use the “flat Earth approximation”. Just diffusion (no reaction) from an infinite cylinder, however, has no 

solution just like in the heat conduction example. 

2.12 BOUNDARY LAYER THEORY 

2.12.1 OVERVIEW 
Consider flow over a flat plate. We will define 

Θ ≡
𝑇 − 𝑇𝑠
𝑇𝑎 − 𝑇𝑠

 

where Θ = 0 at the plate surface and Θ = 1 far from the surface. The temperature at the surface is 𝑇𝑎, and 

the temperature before the fluid comes into contact with the plate is 𝑇𝑎. Consider the fluid element crossing 

the plate at 𝑥 = 0 and 𝑡 = 0. The boundary layer thickness is simply the depth of penetration of heat into 

that fluid. Therefore,  

𝛿𝑇 ∼ √𝛼𝑡 

If we set 𝑡 = 𝑥/𝑈, then 

𝛿𝑇 ∼ √
𝛼𝑥

𝑈
 

We then know that 

ℎ ∼
𝑘

𝛿𝑇
∼ 𝑘 (

𝑈

𝛼𝑥
)

1
2
 

2.12.2 HEAT TRANSFER TO A FREE-SURFACE IN FLOW 
Instead of flow over a flat plate, we now consider a fluid in flow that then comes into contact with a well-

mixed gas (instead of the plate). The interface has a temperature 𝑇𝑠, the fluid is moving at a constant velocity 

𝑈, and the inlet temperature before meeting the gas is 𝑇𝑎. We begin with 

𝐷𝑇

𝐷𝑡
= 𝛼∇2𝑇 

which is 

𝜕𝑇

𝜕𝑡
+ 𝑢⃗⃗ ⋅ ∇𝑇 = 𝛼∇2𝑇 

We note that 𝑢⃗⃗ = 𝑈𝑥 such that  

𝑢⃗⃗ ⋅ ∇𝑇 = 𝑈
𝜕𝑇

𝜕𝑥
 

Therefore, 



𝑈
𝜕𝑇

𝜕𝑥
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) 

for the steady-state solution. In the limit of a very thin boundary layer (large 𝑈 and small 𝛼), 

𝜕2𝑇

𝜕𝑥2
≪
𝜕2𝑇

𝜕𝑦2
 

such that 

𝑈
𝜕𝑇

𝜕𝑥
= 𝛼

𝜕2𝑇

𝜕𝑦2
 

We now make a change of variables such that 

𝜕Θ

𝜕𝑥
=
𝛼

𝑈

𝜕2Θ

𝜕𝑦2
 

using the definition of Θ from before, where Θ = 0 at 𝑦 = 0, Θ → 1 at 𝑦 → ∞, and Θ = 1 at 𝑥 = 0. 

Mathematically, this is similar to the transient heat conduction in a semi-infinite slab but with 𝑡 replaced 

with 𝑥/𝑈. Using that solution (noting that I have the error function, not the complementary error function 

simply based on the slightly modified definition of Θ), we get 

Θ = erf

(

 
𝑦

√4𝛼𝑥
𝑈 )

  

with 

ℎ =
𝑘

√
𝜋𝛼𝑥
𝑈

=
1

√𝜋
𝑘 (
𝑈

𝛼𝑥
)

1
2
 

This then of course implies that 

𝛿 = √
𝜋𝛼𝑥

𝑈
 

We can calculate the average heat transfer coefficient by 

ℎ̅ =
∫ ℎ 𝑑𝑥
𝐿

0

𝐿
=
2

√𝜋
𝑘 (
𝑈

𝛼𝐿
)

1
2
 

We see that the numerical factor for ℎ ∼ 𝑘 (
𝑈

𝛼𝑥
)

1

2
 is 

1

√𝜋
≈ 0.564. This expression is true if we are considering 

the very simple case of uniform flow.  

2.12.3 FLOW OVER A PLATE 
If we apply the no-slip boundary condition, the exact solution has the following form 



ℎ = 0.33𝑘 (
𝑈

𝜈𝑥
)

1
2
(
𝜈

𝛼
)

1
3
 

ℎ̅ = 0.6𝑘 (
𝑈

𝜈𝐿
)

1
2
(
𝜈

𝛼
)

1
3
 

applicable over the region 𝜈/𝛼 ≥ 0.6. It can be used for both Pr ≈ 1 and Pr ≫ 1 (as will be shown below), 

and provides a good interpolation for intermediate values. 

Let us now consider how we can get the above functional form. Specifically, we will consider the case of 

Pr ≫ 1 but instead of a free-surface in constant flow, we have flow over a plate. The key difference here is 

that there is a no-slip boundary condition, and 𝑈 is not constant everywhere. In this case, the hydraulic 

boundary layer will be significantly larger than the thermal boundary layer. The hydraulic boundary layer 

is given by 

𝛿𝐻 ∼ √
𝜈𝑥

𝑈
 

This 𝑈 is just the upstream velocity, and is a reasonable approximation since far the velocity is 

approximately 𝑈 a reasonable distance from the plate (where the velocity is zero due to no-slip). Since 𝛿𝑇 

is smaller than 𝛿𝐻, it does not extend as far out from the plate, and therefore the velocity in the thermal 

boundary layer is not the upstream velocity. Instead, we define a velocity in the thermal boundary layer as 

𝑈𝑇, so 

𝛿𝑇 ∼ √
𝛼𝑥

𝑈𝑇
 

We also note that the ratio of the boundary layers is approximately proportional to the ratio of the velocities 

within those boundary layers: 

𝑈𝑇
𝑈
∼
𝛿𝑇
𝛿𝐻

 

This is a key assumption of this mathematical development. It assumes that the velocity profile appears  

Solving for 𝑈𝑇 and plugging this into 𝛿𝑇 yields 

𝛿𝑇 ∼ (
𝛼𝑥

𝑈

𝛿𝐻
𝛿𝑇
)

1
2
  

We now solve for 𝛿𝑇 to get 

𝛿𝑇
3 ∼

𝛼𝑥

𝑈
 𝛿𝐻 

Plugging in for 𝛿𝐻 yields 

𝛿𝑇 ∼
1

Pr
1
3

(
𝜈𝑥

𝑈
)

1
2
 



or 

𝛿𝑇 ∼
𝛿𝐻

Pr
1
3

 

With this, we can find our expression for the local-area heat transfer coefficient. We start at  

ℎ ∼
𝑘

𝛿𝑇
 

to get 

ℎ ∼ 𝑘 (
𝑈

𝜈𝑥
)

1
2
(
ν

α
)

1
3
 

While we cannot get the numerical factory from this simplified approach, we do get the functional form 

that was shown earlier. Of course, as already stated, the numerical factor is 0.33 such that 

ℎ = 0.33𝑘 (
𝑈

𝜈𝑥
)

1
2
(
ν

α
)

1
3
 

We derived this expression for Pr ≫ 1, but when Pr ≈ 1, the equation can still be used since in that case 

𝛿𝑇 ∼ 𝛿𝐻. 

If we have Pr ≪ 1, the above expression cannot be used. However, the solution is still straight-forward 

because we can note that in the limit of low Prandtl numbers, the velocity in the thermal boundary layer 

looks like the upstream velocity. In that case, the solution is that of  

ℎ =
1

√𝜋
𝑘 (
𝑈

𝛼𝑥
)

1
2
 

2.13 GREEN’S FUNCTION SOLUTION 
Consider a thin film of hot water on the skin or holding a thin hot (or cold) metal sheet between your fingers. 

The excess heat in the film per unit area in the 𝑦𝑧 plane is 

𝑄𝐴 = 𝛿𝜌𝛿𝐶𝑝𝛿(𝑇𝛿 − 𝑇0) 

where 𝑄 is specifically the heat deposited per unit area. At any moment, except in the beginning, we must 

have 

∫ 𝜌𝐶𝑝(𝑇 − 𝑇0)

∞

−∞

𝑑𝑥 = 𝑄𝐴 = constant 

We shall denote  

𝜔 ≡
𝜌𝐶𝑝(𝑇 − 𝑇0)

𝑄𝐴
 

which has units of inverse length. The initial condition is 𝜔 = 0 at 𝑡 = 0, 𝑥 ≠ 0. Idealizing 𝛿 → 0, we get 

𝜔 → ∞ at 𝑡 = 0, 𝑥 = 0, making the above integral valid for all time. From this, 𝜔 satisfies the heat 

equation: 



𝜕𝜔

𝜕𝑡
= 𝛼

𝜕2𝜔

𝜕𝑥2
 

The solution is 

𝜔(𝑥, 𝑡) =
1

(4𝜋𝛼𝑡)
1
2

𝑒−
𝑥2

4𝛼𝑡 

If we wish to scale this up to 2D or 3D, we can find the solution of 𝜔 everywhere by multiplying together 

each dimension’s solution. Therefore, in 3D, the solution would have the following form: 

𝜔(𝑥, 𝑦, 𝑧, 𝑡) =
1

(4𝜋𝛼𝑡)
3
2

𝑒−
(𝑥2+𝑦2+𝑧2)

4𝛼𝑡  

but now 𝜔 would have units of inverse volume (i.e. it always has units of inverse the number of spatial 

dimensions it is a function of). 

This can be used to find the temperature from 

𝑇 = 𝑇0 +
𝑄𝐴
𝜌𝐶𝑝

𝜔 

2.14 HEATED SPHERE IN FLOW 
Consider a hot metal sphere, of radius 𝑎, with surface temperature 𝑇𝑠. It is suspended in a steam with a 

velocity 𝑈 and upstream temperature 𝑇0. Find the temperature distribution in the fluid, excluding the region 

in the vicinity of the sphere. We start by using the following relationship for the Nusselt number of a sphere: 

Nu = 2 + 0.6Re
1
2Pr

1
3 

Recall that  

Nu ≡
ℎ𝐿

𝑘
 

and so for a sphere, with 𝐿 = 2𝑎, 

Nu =
2ℎ𝑎

𝑘
 

This formula for the Nusselt number equals 2 for the situation of no flow, which comes about because ℎ =

𝑘/𝑎 for a sphere. We plug in the expression for the Nusselt number for a sphere into the above expression 

to get 

ℎ =
𝑘

2𝑎
(2 + 0.6Re

1
2Pr

1
3) 

We want to find 𝑄̇, so we note 

𝑄̇ = 𝐴𝑞 = 4𝜋𝑎2ℎ(𝑇𝑠 − 𝑇0) = 2𝜋𝑎𝑘 (2 + 0.6Re
1
2Pr

1
3) (𝑇𝑠 − 𝑇0) 

We now write the heat equation 



𝑈∇𝑇 = 𝛼𝑡∇
2𝑇 

We can neglect the second-derivative in 𝑥 (compared to the second-derivatives in 𝑦 and 𝑧) if we assume 

we are dealing with large 𝑈 (and the flow is in the 𝑥 direction). In 2D, the solution is 

𝜑 =
1

4𝜋𝛼𝑡
𝑒
−
(𝑦2+𝑧2)
4𝛼𝑡𝑡  

We know that 𝑡 = 𝑥/𝑈 so 

𝜑 =
𝑈

4𝜋𝛼𝑥
𝑒
−
𝑈(𝑦+𝑧2)
4𝛼𝑡𝑥  

We then recall that 

𝜑 =
𝜌𝐶𝑃(𝑇 − 𝑇0)

heat deposited per unit length
=
𝜌𝐶𝑝(𝑇 − 𝑇0)

𝑄𝐿
 

We can relate 𝑄𝐿 to our 𝑄̇ by  

𝑄𝐿 =
𝑄̇

𝑈
 

such that 

𝜑 =
𝑈𝜌𝐶𝑝(𝑇 − 𝑇0)

𝑄̇
 

Rearranging this in terms of 𝑇 yields the solution for the temperature field, with 𝜑 defined as above: 

𝑇 = 𝑇0 +
𝑄̇

𝑈𝜌𝐶𝑝
𝜑 

  



3 APPENDIX: VECTOR CALCULUS 
3.1 COORDINATE SYSTEMS 

3.1.1 CARTESIAN COORDINATE SYSTEM 
The following diagram is a schematic of the Cartesian coordinate system. 

 

With this definition, the position vector in Cartesian coordinates is  

𝑟 = 𝑥𝑥 + 𝑦𝑦̂ + 𝑧𝑧̂ 

3.1.2 CYLINDRICAL COORDINATE SYSTEM 
The following diagram is a schematic of the cylindrical coordinate system. Take note that the standard 

definition is that the sign of the azimuth is considered positive in the counter clockwise direction. 

  

With this definition, the position vector in cylindrical coordinates is  

𝑟 = 𝑟𝑟̂ + 𝑧𝑧̂ 

To convert from cylindrical coordinates to Cartesian coordinates, 

𝑥 = 𝑟 cos 𝜃 

𝑦 = 𝑟 sin𝜃 

𝑧 = 𝑧 

 



3.1.3 SPHERICAL COORDINATE SYSTEM 
The following diagram is a schematic of the spherical coordinate system. Note that many mathematics 

textbooks use a slightly different convention by swapping the definitions of 𝜃 and 𝜙. Take note that the 

standard definition is that the sign of the azimuth is considered positive in the counter clockwise direction 

and that the inclination angle is the angle between the zenith direction and a given point.  

 

 

With this definition, the position vector in spherical coordinates is  

𝑟 = 𝑟𝑟̂ 

To convert from spherical coordinates to Cartesian coordinates, 

𝑥 = 𝑟 sin 𝜃 cos𝜙 

𝑦 = 𝑟 sin 𝜃 sin𝜙 

𝑧 = 𝑟 cos 𝜃 

3.1.4 SURFACE DIFFERENTIALS 
The surface differentials, 𝑑𝑆, in each of the three major coordinate systems are as follows. 

Coordinate system Surface differential, 𝑑𝑆 

Cartesian (top, 𝑛̂ = 𝑧̂) 𝑑𝑥 𝑑𝑦 

Cartesian (side, 𝑛̂ = 𝑦̂) 𝑑𝑥 𝑑𝑧 
Cartesian (side, 𝑛̂ = 𝑥) 𝑑𝑦 𝑑𝑧 
Cylindrical (top, 𝑛̂ = 𝑧̂) 𝑟 𝑑𝑟 𝑑𝜃 

Cylindrical (side, 𝑛̂ = 𝑟̂) 𝑟 𝑑𝜃 𝑑𝑧 
Spherical (𝑛̂ = 𝑟̂) 𝑟2 sin𝜃  𝑑𝜃 𝑑𝜙 

 

3.1.5 VOLUME DIFFERENTIALS 
The volume differentials, 𝑑𝑉, in each of the three major coordinate systems are as follows. 

Coordinate system Volume differential, 𝑑𝑉 

Cartesian 𝑑𝑥 𝑑𝑦 𝑑𝑧 
Cylindrical 𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧 
Spherical 𝑟2 sin 𝜃  𝑑𝑟 𝑑𝜃 𝑑𝜙 



3.2 OPERATORS 

3.2.1 GRADIENT 
The gradient is a mathematical operator that acts on a scalar function and is written as grad(𝑓) or ∇𝑓. The 

result is always a vector. It is essentially the derivative applied to functions of several variables. 

In Cartesian coordinates, the gradient is 

ˆ ˆ ˆgrad( )
f f f

f x y z
x y z

  
  
  

 

In cylindrical coordinates, the gradient is 

 
1 ˆˆ ˆgrad( )

f f f
f r z

r r z




  
  
  

 

In spherical coordinates, the gradient is 

1 1ˆ ˆˆgrad( )
sin

f f f
f r

r r r
 

  

  
  
  

 

3.2.2 DIVERGENCE 
The divergence is a mathematical operator that acts on a vector function and is written as div(𝑣⃗) or ∇ ⋅ 𝑣⃗. 

The result is always a scalar. The divergence represents the flux emanating from any point of the given 

vector function (essentially, a rate of loss of a specific quantity). 

In Cartesian coordinates, the divergence is 

 div( )
yx z

vv v
v

x y z

 
  
  

 

In cylindrical coordinates, the divergence is 

   
1 1

div( ) z
r

v v
v rv

r r r z





 
  

  
 

In spherical coordinates, the divergence is 

    2

2

1 1 1
div( ) sin

sin sin
r

v
v r v v

r r r r



 
   

 
  

  
  

3.2.3 CURL 
The curl is a mathematical operator that acts on a vector function and is written as curl(𝑣⃗) or ∇×𝑣⃗. The 

result is always a vector. The curl represents the infinitesimal rotation of a vector function. 

In Cartesian coordinates, the curl is 

 ˆ ˆ ˆcurl( )
y yx xz z

v vv vv v
v x y z

y z z x x y

       
         

         
 



In cylindrical coordinates, the curl is 

 
 1 1ˆˆcurl( ) z r z r
rvvv v v v

v r
r z z r r r

 
 

       
        

         

 

In spherical coordinates, the curl is 

 
     sin1 1 1 1ˆ ˆˆcurl( )

sin sin

r r
v rv rvv v v

v r
r r r r r r

  


 
     

        
                   

 

3.2.4 LAPLACIAN 
The Laplacian is a mathematical operator that acts on a scalar function and is written as ∇2𝑓. The result is 

always a scalar. It represents the divergence of the gradient of a scalar function. 

In Cartesian coordinates, the Laplacian is 

 

2 2 2
2

2 2 2

f f f
f

x y z

  
   

  
 

In cylindrical coordinates, the Laplacian is 

 

2 2
2

2 2 2

1 1f f f
f r

r r r r z

    
    

    
 

In spherical coordinates, the Laplacian is 

 

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

f f f
f r

r r r r r


    

       
      

       
 

3.2.5 MEMORIZATION SHORTCUTS 
It can be a bit of a challenge to memorize the above equations for non-Cartesian coordinate systems. A 

shortcut can be used to memorize them in the special case where dependence is only on the 𝑟 coordinate. 

To do so, we first define 𝑛 as the number of angular coordinates (i.e. 𝑛 = 1 for cylindrical and 𝑛 = 2 for 

spherical). Then, 

grad(𝑓) =
∂𝑓

𝜕𝑟
 𝑟̂ 

div(𝜑⃗⃗) =
1

𝑟𝑛
𝜕

𝜕𝑟
(𝑟𝑛𝜑𝑟) 

∇2𝑓 =
1

𝑟𝑛
𝜕

𝜕𝑟
(𝑟𝑛

𝜕𝑓

𝜕𝑟
) 

3.3 COMMON VECTOR CALCULUS IDENTITIES 
The following are useful identities in vector calculus for a scalar field 𝑓 and a vector field 𝜑⃗⃗. 

The product of a scalar and vector is as follows: 

div(𝑓𝜑⃗⃗) = 𝑓div(𝜑⃗⃗) + 𝜑⃗⃗ ⋅ grad(𝑓) 



Useful second derivative identities are shown below: 

div(grad(𝑓)) = ∇2𝑓 

curl(grad(𝑓)) = 0 

div(curl(𝜑⃗⃗)) = 0 

∇2𝜑⃗⃗ = grad(div(𝜑⃗⃗)) − curl(curl(𝜑⃗⃗)) 

3.4 SURFACE INTEGRATION 

3.4.1 THE SURFACE INTEGRAL 
The surface integral is a generalization of multiple integrals to integration over surfaces. It is the two-

dimensional extension of the one-dimensional line integral. The notation of the surface integral is not agreed 

upon. Some texts using a double integral with an 𝑆 beneath to indicate a surface integral, whereas other 

texts use the symbol for a line integral – an integral with a circle around the center – to represent surface 

integrals as well. Some other texts using a double integral with a circle around it. They all mean the same 

thing.  

The surface integral of a scalar field is written and computed as  

𝐹 =∯𝑓 𝑑𝑆 

The surface integral of a vector field cannot be as easily computed. If one wants to compute the surface 

integral of, say, the force (which is a vector), one needs to convert it first to a scalar and then apply the 

direction at the end of the computation. As such, the general method of doing the surface integral of a vector 

is to say 

𝐹 =∯𝑓 ⋅ 𝑘̂ 𝑑𝑆 

where 𝑘̂ is in the same direction as 𝐹 is anticipated to be in. In the special case of 𝑘̂ = 𝑛̂, this surface integral 

is called the flux 

Flux = ∯𝑓 ⋅ 𝑛̂ 𝑑𝑆 

To make the computation of surface integrals easier, common systems and their corresponding 𝑑𝑆 

equivalents are included in section 1.1.4. You can then simply substitute in for the surface element 𝑑𝑆 in 

the integral to convert it to a standard double integral and then apply the appropriate bounds. 

3.4.2 DIVERGENCE THEOREM 
The divergence theorem can convert a surface integral into a volume integral when applied to a vector field 

via 

∯𝑓 ⋅ 𝑛̂ 𝑑𝑆 =∭div(𝑓) 𝑑𝑉 

The volume integral can be computed by substituting in the appropriate volume element 𝑑𝑉 and including 

the appropriate bounds. 


