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1 NEWTON’S LAWS

1.1 INERTIAL FRAMES
Newton’s first law states that velocity, 7, is a constant if the force, F, is zero. Newton’s second law is the

very famous F = md. At first glance, it would seem that Newton’s first law is simply a recapitulation of
the second law. After all, since acceleration, d, is simply the first time derivative of velocity, then if velocity
is constant, acceleration is zero and thereby force is zero. However, there is indeed a reason to explicitly
state Newton’s first law. Newton’s first law sets the frame of reference as the inertial frame. Examples of
nearly inertial frames are the Earth, an Earth-bound lab, and a train moving with constant speed with respect
to the Earth.

Any rapidly rotating frame is a non-inertial reference frame. Non-inertial but accelerating frames rely on
Einstein’s equivalence principle, which states that

“All the phenomena in a frame that are accelerating with respect to an inertial frame with
acceleration d, happens as if in an inertial frame with apparent gravity, where the acceleration of

gravity is given by —dg.”

1.2 NEWTON’S LAWS
In more exact terms, the first law can be said to mean:

“There exists a frame of reference such that in this frame a body not acted upon by any force continues
to be either in the state of rest or a uniform motion (i.e. with constant velocity). Such a frame is called
inertial. Any frame moving with constant velocity with respect to an inertial frame is also inertial.”

This should make sense and establishes a context for Newton’s second law. Newton’s second law can be
effectively worded as “In an inertial frame, a body of mass m acted upon by a force F, acquires an
acceleration @ = F /m.”

1.3 GALILEAN INVARIANCE

The last sentence of Newton’s first law in the prior subsection is a little more nuanced than it appears. Let’s
prove that for any frame moving with uniform motion with respect to an inertial frame is also inertial. This
is frequently called the Galilean invariance.

Consider two inertial frames given by S and S’ that both share a universal time. Suppose S’ is in relative
uniform motion to S with speed v. Therefore, for a position r'(t) in S’ frame and position r(t) in S frame
then

r'(t) =r(t) + vt
The velocity of the object in the S’ frame is given by
_dr'®) _d@r(@©) +wvt)  dr(t) N
Codt dt Codt
Differentiating once more to yield acceleration gets
_ du'(t) _ d(u(t) +v) B du(t)
Codt dt Codt

u'(t) v=u(lt)+v

a'(t) = a(t)

Therefore, assuming the mass is identical in both inertial frames, Newton’s laws in frame S should also be
true in frame S’ (and all other frames move with uniform relative motion to S).
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2 MATHEMATICAL DESCRIPTION OF FLUID FLOwW

2.1 FIELDS AND FORCES

Fluids can be described based on velocity vector fields, (7, t), and pressure scalar fields P(#,t). These
variables satisfy differential equations, which express the two basic laws of nature: the conservation of mass
and Newton’s second law. The conservation of mass states that fluid can move from point to point, but it
cannot be created or destroyed. Newton’s second law implies that we use an inertial frame of reference;
otherwise, fictitious forces such as centrifugal and Coriolos forces must be included.

Two kinds of forces are typically considered in the study of fluid mechanics. The first is long-range “body
forces” such as gravity, usually known per unit mass (g) or per unit volume (e.g. pg). The second is surface
“contact forces” due to the short-range action of fluids on fluids (or solids) across an imaginary (or real)
interface, such as pressure or viscous friction.

2.2 CONTINUITY EQUATION
The conservation of mass for a fluid, and by extension the continuity equation, will be derived below.

1. Let’s assume an arbitrary control volume in space, given by V. It has a surface S and a normal
direction given by 7.
2. Since mass is conserved, we can say that

(total rate of increase of mass in V) = (total net flow of mass into V)

3. Inintegral form, this can be written as

ff (rate of increase of mass in unit volume) dVV

= # (amount of mass crossing, per unit time, a unit area of S in the inward direction) dS
This can be mathematically expressed as

[[22av = § ps-nas

4. Applying the divergence theorem (see Appendix) yields

[[22av=—[[[v-pvav
[ @+v-ps)av=o

6. The integrand must in and of itself be equal to zero because the above expression must be true for
an arbitrary volume V and for any arbitrary integral bounds (i.e. for all volumes). As such, we arrive
at the continuity equation

5. Therefore, we can say

dp ,

E +V.-pv= 0
2.3 THE STRESS TENSOR
Consider f as the surface force per unit area of an imaginary (or real) interface dividing a fluid, exerted by
the fluid “outside” (where 7 points) on the fluid (or solid) “inside”. For a given point in space 7, movement
of time ¢, and orientation 7 this force is a vector. However, f is not a vector field because it depends on 7
and t. Consider the simplest case: a fluid at rest with %(#, t) = 0. Then, f is created by pressure only and
is directed opposite to 72, and its magnitude is simply p.
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Therefore, for this case

-

f=—pii

Since f(?, t,n) = —P(#, t)n, this means thatf = (scalar field)7. But in the general case, when 1 # 0 and

f can be directed in all possible ways relative to 71, we need a new type of field: a tensor field, where the
tensor is a second-rank invariant object (scalars being of zero rank, and vectors being of first rank) which
has nine components. Then, in general

-

f

where @ = 6 (7, t) is the stress tensor and depends only on the point in space # and time ¢, as a field should.
It completely specifies the force distribution in a moving fluid due to contact forces.

-

‘n

I
Qi

In any given coordinate system, with unit vectors i, j, k the components of a tensor make up a matrix given

by
Oii O0jj Ojg
g=\9%i 0% OGjk|; Uij=i‘5'j

Oki Ogj Okk
In the particular case of a system at rest, 1 = 0, the stress tensor @ must be such that
g-n=—-Pn

for any 7. That is, & - 71 o 71 . This can be true for an arbitrary 7 only if & o< T where T is the identity tensor
(also called unit tensor), which in all coordinate systems has the components

/10 0
I=(0 1 0
0 0 1

lij = 6y

As such,

where &;; is the Kronecker delta. So, in a fluid at rest,

= —PI

Qll

If 4 # 0 (and ¥ # constant) then

—PI+7

o

where T is sometimes called “extra stress” or more commonly “viscous stress”. It is nonzero if the fluid is
sheared or strained. An easier way to use this tensor is to note that

O-ij = —P6ij +Tij
where

Tij = ,u(Vlu] + Vjui)
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2.4 NEWTON’S LAW OF VISCOSITY
When a simple fluid is sheared, it resists with the force (per unit area of the plane) which is proportional to
the gradient (i.e. derivative) of velocity. For general motion, this becomes

T =2uE
where y is the viscosity and E is the rate of strain tensor defined by
E = > (Vu + Vu )
where the superscript T refers to the transpose. Therefore,

&= —PI+2uE

which is an approximate empirical relationship of Newtonian fluids, not valid for complicated fluids like
polymer solutions. Note that E is symmetric such that E; ; = Ej;. The term Vi is not the divergence of u
since that would require a dot product. Rather, it represents the velocity gradient tensor, which is the
gradient operator applied to %. In Cartesian coordinates this is

Ju, Jdu, Ju,
(ax dy az\
Vi - | du, OJdu, OJdu,, |

Jox dy 0z
du, Ou, OJu,
Ox dy 0z

There is a point of notation that should be discussed. We should note that multiplying two tensors can be
done via (&E)ij = a;b;. This is also written as (&®5)ij = a;b;. The @ operator is often referred to as the

tensor product.

2.5 GENERALIZED GAUSS’ THEOREM
Recall that the standard divergence theorem states that

#f-ﬁd_?: J:Udiv(f)dV

We can write a generalized Gauss’ theorem that is as follows

J_U V(operation)(tensor) dV = # fi(operation)(tensor) dS

Recall that a scalar is a tensor of rank 0, a vector is a tensor of rank 1, and then tensors we have described
here are rank 2. The (operation) term can be a variety of things, such as (dot product), (ordinary product),
(tensor product), or (cross product). In the case of (operation) = (dot product) and (tensor) = (vector) then
we arrive at the divergence theorem.

Let us consider an example of the generalized Gauss’ theorem. In this case, we will have (operation) =
(ordinary product) and (tensor) = (scalar). Therefore,

ijdV=j;ﬁde
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In one-dimensional space between the points a and b, the gradient operator is just V= f% for a line in the
x dimension. We also note that dV = dx for this system. The lefthand term then becomes

b b
[vrav=[+%ax= [ 5a
fdv=|xX% =] f
a a
Since there is no surface to integrate over, the righthand term becomes

ffﬁf dS = (flyep — flaea)®

Therefore, equation the two expressions (and dropping the X since we only have one dimension anyway)

b
fdf = fle=p = flx=a
a
which is the fundamental theorem of calculus!
2.6 NEWTON’S EQUATION OF MOTION FOR A FLUID
Recall that in an inertial frame, F = md. This will apply to any fluid element so small that it can be

considered to have a single value of d. Let it be infinitesimally small. Then, m = p dV and F= </_5 dv,
where (,1_5 is the total (body and contact) force per unit volume. Then pd = q_5

If only gravity were present, then q_i = pg, but we need to find contact force per unit volume given the
stress tensor field &. Consider a continuum (e.qg. fluid) at rest (i = 0,d = 0) under the combined action of

some arbitrary body force field (not only gravity) and . Then, 0 = 117 = 1/_51, + z/_fc where the b subscript is
for body force and ¢ subscript is for contact force. We also have that z/jb (7) is known (imposed from things
such gravity, electromagnetic field, etc.) while 1, (#) depends only on & (7).

Any part of this continuum, enclosed in a volume V, is at rest, and so the total force acting on it must be
zero. Thus,

(total body force in V) + (sum of contact forces acting on matter in V across surface S) = 0

ﬂ lﬁbdv+#fd5=0
ﬂ lﬁbdv"‘#g'ﬁdS:O
ﬂﬁbd‘“ffffv;dv:o

This becomes

Substituting in for the force

Applying the divergence theorem

Combing the integrals
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fff[$b+v~3]dv=o

Like with the continuity equation, this expression must hold for an arbitrary volume, and therefore the
integrand itself must be zero, such that

—

We can now introduce motion by making the expression no longer equal zero. Since it is a force balance,
we can say that

In the absence of electromagnetic effects, zﬁb = pg, SO
pi=pg+V-a

This is known as Newton’s Second Law for fluids. We can write d = du/dt of the fluid element, so

D _ G+V-o
Ppr =PI o

This equation is exact with no assumptions other than Newton’s Second Law.

2.7 NAVIER-STOKES EQUATION
We can now derive the Navier-Stokes equation from Newton’s Second Law for fluids. We make two key

simplifications. For any arbitrary scalar field f (7),
V-fl=Vf
For an incompressible fluid
V- (Vi +vuT) = v
This then means that
V-G =-VP+uv?i

Therefore, we arrive at
i VP + uV?i + pg
Ppr = uv-u -+ pg
where the capital D indicates a material derivative. This is defined as

Di_ o oFou_ou .
Dt — ot ocor oc VM

As such, the Navier-Stokes equation (for an incompressible fluid) simplifies to

aiz — — 2= -
p E+u-Vu =—-VP +uV-u+pg
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2.8 SIMPLIFYING THE NAVIER-STOKES EQUATION

2.8.1 REDUCED PRESSURE

The Navier-Stokes equation can often be written without explicit use of gravity terms through the use of a
modified pressure, P.,,q. Modified pressure can be used when the problem does not involve free surfaces
(e.g. water/air interface). The modified pressure is defined as

Prod = P — Phydrostatic
where
Phydrostatic = pg T + constant
Then,
P =Pnoq+pg -7+ constant
With this, the pg — VP term in the N-S equation becomes
p7 — VP =pg — VP04 — pV(g - 7 + constant) = —VP,,q

From this, we can see that we can neglect the gravity term in the N-S equation and replaced VP with VP,,,4.
This means that

p E+u-Vu = —VPioq + UVeU

Oftentimes, the “mod” subscript is omitted for brevity’s sake.

2.8.2 REYNOLDS NUMBER

The Navier-Stokes equation can be written using only dimensionless quantities. A dimensionless variable
is defined as the original value divided by a given scale. For distances, you should use an appropriate length
given the boundary conditions and is denoted L. The dimensionless velocity is denoted u. The
dimensionless pressure is simply pu?, and the dimensionless time is then L/u. With these definitions, the
Navier-Stokes equation becomes the following

al—i — — 1 22
—+u-Vu=-VP+—Vuy
Re

where Re is the Reynolds number is

If the geometry of two problems is similar except for scale, and the Reynolds number is identical in both
cases, then the mathematical solutions, in scaled dimensionless variables, are identical. This is the basis
behind most “scale-up” studies.

2.8.3 APPROXIMATE SOLUTIONS OF THE NAVIER-STOKES EQUATION
Generally, the forces on a given fluid are

—(inertia force) = (pressure force) + (viscous force)
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where inertia force is simply —mad. In many flows, the pressure force is mainly balanced by either the
inertial force or viscous force. The key question is when either of these terms can be neglected in the Navier-
Stokes equation. We will do this by estimating the ratio of

PDt
V24l

5

After all of the relevant quantities are made dimensionless, this ratio becomes the following (assuming
steady flow)

Du .
Re Dt _ o -Vl
V2| V2

If Re « 1, viscous forces are dominant, which is called Stokes flow, creeping flow, or low Reynolds flow.
This then means that the Navier-Stokes equation can be written as

0 =—-VP +nV%i

where the left-hand side of the Navier-Stokes equation is approximately zero under this assumption. Note
that this drops out the density term.



FORCES AND TORQUES: SPHERE IN STOKES FLow | 11

3 FORCES AND TORQUES: SPHERE IN STOKES FLOW

3.1.1 PROBLEM SETUP

Consider Stokes flow past a sphere of radius a. Far upstream, the flow is uniform with velocity U, and the
pressure there is P,. In the spherical coordinate system centered at the center of the sphere, the axis 8 = 0
is along the direction of the incoming flow (which will be said to flow in the k direction). It can be derived
(although it will simply be stated here) that the velocity profiles and pressure profile are

U, = (1 —;%+%(§)3)c059

and

The goal is to calculate the total force on the sphere from the fluid, which can be calculated as the sum of
the force due to the tangential stress on the surface of the sphere, the force from the viscous normal stress,
and the force on the sphere due to pressure. Why is this so? First, let’s write out the expression for force:

-

f=a-1
We know that the normal direction on the surface of the sphere is #, so i = 7. We can rewrite the force as

f=

~

‘T

Qi

From symmetry, we can make the argument that the force has no ¢ component. Therefore,
f=fit+fe0
where f,. = 7 - f and is the normal stress and f = 0 - f and is the tangential stress. We can now state that

u,
or

fo=Ff-f=%-6-f=0,,=—P8, +T,,=—P+27

) d ugy 1lou
T = 0gr = —P69T+T9T =T]<T5(T)+; a@r)

I
)
Qi

From this, we see that there are three components to the total force: the force due to tangential stress 74,
the force due to normal stress t,.,., and the force due to pressure.

3.1.2 FORCE DUE TO TANGENTIAL STRESS
We now look at calculating the force due to the tangential stress, t4,. Therefore, we must first calculate the
tangential stress, which turns out to be
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B ( 6(u9)+16ur)_ 3nU sin 6
tor =M\ \7) "7 90) T T2 a

The force due to tangential stress is then

ﬁzﬁfgédSzﬁrgrédS

It is difficult to do the surface integral of a vector, so some simplification must be made. By symmetry, we
can note that the force on the sphere will only act in the direction of flow (which we have defined as the k
direction). Therefore, we can say multiply both sides by k

ﬁ./;:(#feréds)-zz

Since k is a constant, it can be pulled into the integrand (and we can note that F = F- k)
F = #Tgr é . EdS

We then note that 8 - kK = — sin 8. This is not a trivial statement, so let’s understand this a bit more.

The figure on the next page is a 2D projection of the 3D sphere, where the cyan arrows represent the fluid,
and the yellow arrows represent the tangential force (the maroon arrows represent the normal force, which
we will return to later). Due to mathematical convention (and the right-hand rule), the quadrants are
numbered counter clockwise such that the angles are as shown below (note that we defined in the problem
statement that & = 0 aligns with the direction of the fluid flow). We see thatat 8 = 0 and 8 = m, the force
in the k direction should be zero. We also see that at 8 = /2, the force should be in the —k direction
whereas at # = 3m/2, the force should be in the +k direction. The trigonometric function that satisfies
these conditions is — sin @ and therefore is the value of 8 - k.

Making this substitution,

F = # —Tg,Sin 0 dS

This is now a scalar quantity we can integrate easily. We note that dS = r2sin8 dfd¢ in spherical
coordinates, and substituting this in (and applying » = a), we arrive at
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27T

T
F =f f—Tgr sin? 8 a?dfd¢
0 0

When we substituting in 74, (evaluated at r = a), we arrive at

21T

T
3 Usin@
F:ff " )sin29a2d9d¢
0 0

which simplifies to
21

s
nUaf fsin39d9d¢
0 0

le

This becomes
T
F= 317Ua7tf sin® 6 do
0
We can split this into
T
F= 317Ua7tf sin? 0 sin 6 dé
0
By using a trigonometric identity,
n

F= 37]Ua7rf(1 —cos?0)sinf db
0

By using the substitution ¢ = cos 8 and d¢ = — sin 6 d6 we can say that that

0=
F = —3nUan f (82 —1)d¢
6=0
which becomes
F =4mnUa
Assigning the sign yields
F= 4mmUa k

3.1.3 FORCE DUE TO Viscous NORMAL STRESS
The total force in the r direction can be found by

=#frfd5

Substituting in the value of £, yields
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F= # (=P + 1,,)7dS

F =#—P?d$+#rrﬁd.§

The right integral is the force due to the viscous normal stress and will be determined in this part of the
problem. Just to be rigorous, we once again note that it is difficult to calculate the surface integral of a
vector and must multiply both sides by k, the direction of the force. As such,

This can be split up into two parts:

F:ﬁ-k:#—w-i}ds+#rrrf-§ds

The left integral is the force due to pressure, and the right integral is the force due to the viscous normal
stress. | will focus on the force due to the viscous normal stress in this subsection. It can be calculated by

Ju,
Ty = 21) or
By evaluating this at » = a, we arrive at
T =0

Therefore, when we go to calculate the force due to the viscous normal stress, we would find that

#rm-kds:o

and so there is no contribution from the viscous normal stress.

3.1.4 FORCE DUE TO PRESSURE
We will now calculate the force due to pressure (i.e. the left surface integral in the previous subsection). It

was explicitly derived in the previous subsection, but | will drive this point home by recalling that f =
—Pi. As such, since i = 7 and since we must convert the vector to a scalar for integration purposes, we
arrive at the same result as in the prior subsection

F=#—Pﬁ-l€d$

We can now note that # - k = cos 6. Once again, this is not a trivial point, but it can be determined from
the previous figure by focusing on the maroon arrows that represent the normal force. We see that the value
of the force should align with k at & = 0 and be in the direction of —k at 8 = 7. Further, we see that at
6 =mn/2 and 8 = 3m/2, the normal force is orthogonal to the direction of fluid flow and therefore has no
component in the k direction. The appropriate trigonometric function for this is cos 6.

Applying this identity,
F = # —Pcos@dS

We recall that dS = 2 sin 8 dfd¢ in spherical coordinates. Substituting this in and making r = a, we
arrive at
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27T

i
F=f f—PcosBazsianGdg‘b
0 0

Substituting in for the pressure

21

; 3nU )
sz f—(PO—57c059>c059a25m9d9d¢
00

This simplifies to

21 2w

T
3
F :f fEnUacoszesin9d9d¢—f fPOaCOSHSianHd(l)
0 0 0 0

The right term goes to zero because the integral of an odd function over a symmetric range is zero (or you
can calculate it yourself to find out). This means that

2m

g

3
Er)Ua cos? 0 sin6 dod¢

o — 4

This becomes
Vs
F= 3quaf cos?@sinf do
0

By using the substitution ¢ = cos 8 and dé = — sin 8 d@, we can integrate the expression with ease to yield
F =2myUa
If we apply the direction now we arrive at
F= 2mUa k

3.1.5 TOTAL FORCE ON THE SPHERE FROM THE FLUID
The total force on the sphere from the fluid is the sum of the forces in the prior three sections. As such, the
total force is simply

F= 6mnUa k

This is often referred to as Stokes’ formula.
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4 ONE-DIMENSIONAL FLOW IN VIScOUS FLUIDS

4.1 POISEUILLE FLOW
Let us consider the steady flow of an incompressible fluid through a horizontal cylinder of length L and
radius a. The goal is to find the velocity profile, mean velocity, and volumetric flow rate.

In this problem, I will use cylindrical (r, 8, z) components. The z direction will be the direction down the
pipe. The value of r = 0 will be set to be in the middle of the cylindrical pipe. With this set of definitions,
we have that i = u, (i.e. u, = uy = 0). We also postulate that u, (7).

We start with the continuity equation:

dp
— +V-pii=0
ot pu

Assuming that p is constant, this simply becomes

V-u=0
which in cylindrical coordinates is
10 10 0
e (ruy) + ey (ug) + E(uz) =0
This simplifies to
du
azz =0

Now, let us write the Navier-Stokes equation. Ignoring the effect of gravity,

aﬁ — — 2>
p a+u-Vu = —VP +nV-u

In cylindrical coordinates this becomes,

<6uz N ou, L Yo ou, N auz) _ 0P N 10 ( auz) N 1 0%u, N 0%u,
PUat " or T o0 "Mz ) T "oz T Far\ or r2 002 = 9z2

We employ the previous assumptions. Also, we note that the pressure differential can be well-approximated
by a linear pressure drop, AP, which is conventionally defined to be a positive quantity. As such,

dP _ Pz - Pl _ AP

dz L L

As such, the Navier-Stokes equation can be simplified to the following form

O—AP+ 16( auz)
L n ror rar

Rearranging the above expression yields

AP 6( auz)
nLr_ar "or
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Integrating twice yields

AP 1?2
u, = _n_LZ-l_ CiIn(r) + C,

We have to employ boundary conditions now. We know that at r = 0, the velocity should be finite. As
such, we can immediately say that C; = 0. Therefore,

B APr2+C

The other condition is that at = a, the no-slip boundary condition applies and u, = 0. We then have that

c _Apa?
27 L 4

such that

2 22
uy =g (@ =)

The mean velocity can be calculated by dividing the total volumetric flow rate by the cross-sectional area
via

_Jfu,dA
(%)—W

This becomes
wa*Ap

N
zl — =

[ [rdrdg  ma* 8l
The mean velocity in the cross-section is then

a’AP
8nL

(uz) =

The total (volumetric) flow rate can be found by multiplying the mean velocity in the cross-section by the
cross-sectional area

2T a

0= ff(uzmA - f f(uz)rdrde - ”g;ip
0 0

4.2 STOKES FLOW AROUND A SPHERE: TRIAL SOLUTIONS
Consider a sphere rotating very slowly in the ¢ direction (in spherical coordinates) with an angular velocity

Q. An image is shown below. We want to solve for the velocity profile and the torque of the fluid on the
sphere.
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| Terque T, is required
to make the sphere
rotate

Before diving into the problem, I will remind you what angular velocity is. Angular velocity has units of
inverse time. It has a direction along the axis of rotation (as defined by the right-hand rule). For instance, if
the sphere is rotating counterclockwise, the direction would be upward as shown below. Also, the
relationship between angular velocity and velocity is the distance from the axis of rotation.

A

—

w

=y

We start with the continuity equation. For constant density, we have the following in spherical coordinates
Ju
¢ _ 0
0¢

Now, we write the Navier-Stokes equation in the direction of fluid flow, which is ¢, to get

0_16 26u¢+16 1 0 -
Cr29r r or 200 \sin 9o (u¢sm )

We have the following boundary conditions:
r=a, ug= allsin @
r—ow, u,= 0

Let us pause for a second to figure out how the boundary conditions were obtained. On the surface of the
sphere, the no-slip boundary condition applies. We are given angular velocity, which has units of 1/s. We
want to convert this into the velocity in the ¢ direction. There are two ways we can figure out how to get
this. The first is a purely mathematical argument. At the top of the sphere (6 = 0) and the bottom of the
sphere (6 = m), the value of u should be zero because there is no rotation at the vertical poles. Conversely,
at 8 = m/2, the velocity in the ¢ direction should simply be given by aQ. The sine function is zero at 8 =
0,7 so we can state that the aforementioned conditions are satisfied if we have uy = aQsin6 at r = a.
The second way is a purely geometrical argument. Consider the following schematic. The velocity in the ¢
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direction is related to the distance from the axis of rotation, not from the center of the sphere. To find this
gquantity, we see that we need to a factor of asin 6 such that uy, = aQsinf atr = a.

The second way is a purely geometric argument. Consider the following schematic. To find the dostamce
between the surface and the axis of rotation, we see that we need to a factor of asin @ such that uy =
aQlsin@ atr = a.

By looking at the boundary condition at r = a, it is reasonable to assume a solution of the form
ugy = f(r)sing

When this trial solution is inserted into the Navier-Stokes equation and simplified through the use of the
product rule, it results in the following expression

0 of
—— 27 ) _
0= ar (r 6r> 2f
This is called an equidimensional equation and can be solved with a trial solution of the form
f=rn

where the powers of n will be used to generate an expression for f that has constant coefficients raised to
the power of n. When substituting in f = r™ into the simplified Navier-Stokes equation we see that n =
—2,1. Therefore, the solution takes the form

Ca
f = C1T + T_Z
Recall that we said ug = f(r) sin 6, so
G\ .
Up = (Clr + r_z) sin @
We now employ the boundary conditions to find that C; = 0 and C, = Qa3 so that the velocity profile is

Qad
Up = r—zsmB

If the pressure field is desired, one can solve the Navier-Stokes equations in the other dimensions (you
would find that pressure is constant when this is done). The torque can be determined by computing the
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stress, multiplying it by the lever arm, and then integrating over the surface of the sphere. Since we have
flow in the ¢ direction that is a function of r, we want the stress that is 7,4 which is

0 'U.¢
g =57 (3F)
in our case once the simplifications are made. You can plug in the velocity distribution and apply r = a
(since we want the stress at the surface) to get

Trd’lr:a = —3n{lsin@

The lever arm is given by asin 8, so the torque can be found by

K= #TT¢|r=a(asin 0)dsS

Once this computation is performed, you arrive at
K = —8mnQad

Of course, torque is a vector, and it needs a direction. It will be in the direction of the angular velocity. As
such,

K = —8mnQa?

4.3 PLATE SUDDENLY SET IN MOTION: TIME-DEPENDENT FLOW

Consider a semi-infinite body of liquid at a constant density and viscosity that is sitting atop a horizontal
plate in the xz plane. The plate is suddenly set into motion at a velocity u,, causing a fluid velocity profile
that changes in both time and in y, the vertical distance from the plate. The goal is to find the velocity
profile.

As always, we start with the Navier-Stokes equation

aﬁ — - 2= -
p E+u-Vu =—-VP +nVu+pg

The fluid velocity is © = u, (y, t). Therefore, the above equation simplifies to the following once relevant
terms are canceled in the Navier-Stokes equation:

ou, 0%u,
ot Va2
where v = n/p. We have the following conditions:
t<0, u,=0
y=0, uy=1ug

y = o, ux=0

To solve this, we need to first introduce a non-dimensional quantity for the velocity. | will define the non-
dimensional velocity as
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¢

Il
:|:
o R

The boundary conditions now become the following for ¢ (y, t)

¢(»,0)=0, ¢0,t)=1, ¢(oo,t)=0

We know that ¢ should be a quantity that is proportional to y, t, and v (our independent and dependent
variables in the simplified Navier-Stokes equation). We can then say that

d=dm
where
_ Y
1= e

It should be apparent that the dimensions of n are indeed unitless. I have included the factor of 4 because |
know what the answer is going to be in advance and it simplifies the algebra. This step is not necessary and
does not change the validity of the solution. With these expressions, we can rewrite the partial differential
equation as

09 0%¢
ot " 9y?
Let’s break this down part by part. For the time component we can say that

0p dpoy  1ndg

9t dnot  2tdn
For the y component we can say that

0p dpon do 1
dy dndy dn+avt

Therefore,

7o _d'o 1

dy? dy?4vt
This makes the N-S equation become

2

% + 27 % =0
If | tentatively define
d
)=t

such that

di

—+2np =0
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we can then rearrange this to
! dy 2nd
- = —<nan
Y

and integrate once to get

¥ = Crexp(—n?)

Transforming this back to our prior set of variables,
d¢
@ C1exp(—n?)

And integrating one final time yields

n

¢ =0 j exp(—72) di + C,
0

where | have set 77 to be a dummy variable of integration to distinguish it from 5 in our integral’s bounds.
The boundary conditions are

n=0 d¢=1
n = oo, ¢=0

Applying these boundary conditions yields the following after some algebra,

Iy exp(=7?) dn 2 o
=1--5 =1-— (—=72) dij = 1 —erf(n) = erfc(n)
10) fo oxp(—79) d7 \/EO exp(—1 1 erf(n erfc(n

This solution makes use of the error function, denoted erf, but do not let this scare you — it is simply a short-
hand way of expressing the otherwise messy integral shown above. The complementary error function,
erfc, is simply 1 minus the error function. With this, we can transform ¢ back to our original variables to
arrive at

u, = ugerfc (

70
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5 VORTICITY
5.1 DEFINITION OF VORTICITY
Vorticity is defined as
w = Vxu

The vorticity indicates the local rate of rotation of a fluid element. Generally, it is different from point to
point. The surface integral of a curl can be related to the line integral of velocity via Stokes’ theorem (see

Appendix):
#W-ﬁdb“:jgﬁ-d?

The line integral of velocity is also called the circulation of velocity (over a given boundary). To test this
formula out, consider a disk in rotation with a radius a. The above expression then lets us say that

wra? = (ﬁa)Zna
such that
w=20

To clarify, the left-hand side of the first equation is vorticity multiplied by the surface area of the disk
whereas the right-hand side of the first equation is the velocity multiplied by the circumference of the disk.

In the following sections, we will find that

1. Vorticity is generated on solid surfaces due to no-slip boundary condition
2. Vorticity “diffuses” due to viscosity
3. Vorticity is swept downstream due to convection

5.2 CURL OF NAVIER-STOKES
The curl of the Navier-Stokes equation (in dimensionless form) is the following:
ow

1
—+U-VW=w-Viu+—VWw
ot Re

In a 2D or axisymmetric flow, we have that w - Vii = 0, so the Navier-Stokes equation becomes

ot W T Re W
5.3 Low REYNOLDS NUMBER
One extreme case we will consider is when the Reynolds number is very small (approaching zero), such as
with creeping flow. Recall that this is the same as creeping flow, so the entire left-hand side of the (velocity-
pressure form) Navier-Stokes equation drops out. When dealing with the vorticity form, since convection
is negligible, nd we can write the Navier-Stokes equation in dimensional variables as follows

ow

ey

at p
where n/p is the kinematic viscosity, often denoted v. This equation is that of the diffusion equation. Of
course, if the vorticity does not change with time we arrive at
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Viw =0
This essentially means that for creeping flow with low Reynolds number, and the vorticity looks like the
following where each line represents a constant vorticity contour line and the flow comes from the left.

/ o

/ \
I o N
—_—
Y \
{l ’
N it
A /
N v

5.4 HIGH REYNOLDS NUMBER
If the Reynolds number is very large (approaching infinity), Rievszz can be ignored, and the Navier-Stokes
equation simplifies to

ow

—_— VW=0
6t+u w

which is the same as

DW_O

Dt
This states that the vorticity is conserved (i.e. it remains constant) in each moving fluid element. In a steady
flow, the vorticity is then constant along a given streamline. When the Reynolds number is high, we have

increasing convection, and the vorticity field around an arbitrary body looks as follow, with w = 0 outside
the boundary layer and wake but w # 0 inside the boundary layer and wake.

=  —

While the above form of the Navier-Stokes equation tells us physical information about the vorticity, it is
not incredibly useful for gaining information about the velocity profiles since the boundary conditions for
vorticity are not straightforward. We would also like to write the velocity-pressure form of the Navier-
Stokes equation but in a way that accounts for regions of irrotational flow.

From vector calculus (see Appendix) and under the conditions of no divergence of velocity, we know that
the following is true

V21U = —Vx(Vxu) = —Vxw

This is an important quantity to know because then we can say that in irritational flow, where w = 0, the
viscous force nV2iu = 0 for any value of viscosity (of course, this also holds true if the viscosity is
incredibly small) even though the viscous stresses are not necessarily zero. Therefore, outside the boundary
layer and wake where there is irrotational flow, we can say that the Navier-Stokes equation simplifies to
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ou +1-Vi | =—-VP+pg
ploptu-Vi)= Pg
In steady flow, the time derivative goes away to yield

p(U-Vu) = -VP + pg

This equation is called Euler’s equation. After a bit of vector calculus and algebra which has been omitted
here for brevity, we can arrive at

w +—+ tant

- T — Z = constan

2 p 4
throughout the irrotational flow areas. This formula is called Bernoulli’s theorem.

In regions with irrotational flow (also known as potential flow), we can define ¢ as the velocity potential
such that

uU=vVe

This holds because the curl of velocity is zero. Then, from the continuity equation we can say that
V-u=0

which implies
Vip =0

5.5 CIRCULATION
Suppose a closed curve made up of fluid particles and moving with a fluid where the viscous force is zero
or negligible at all points along it. Consider the circulation of velocity along the curve:

circulation = _(f u-dr

We would like to know how the circulation changes with time, or

d — d-)
afu T

We can distribute the derivative inside and then note that the derivative of the position vector is velocity
ffd(* dﬁ)—dﬂ dr +u (d*)—dﬁ dr +u d*—dﬁ d*+d(1* *)
dtu T'—dtT'u r—truu—tr Zuu
Therefore,
‘if* a7 = 4 d*+d(1*ﬂ
ac ) T 2

We then note that ¢ df = 0 for any single-value function. Thus, in general, for any closed curve

dqu d*—jgdﬁ g7
acl T T Y ae
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This says that the time derivative of circulation of velocity over a closed curve is equal to the circulation of
acceleration over the same curve. If on the curve, the viscous force —vVxw is negligible then

di 1 vp

at  p

Therefore, plugging this into the rate of change of circulation from above (and if p is constant)

d — - 1 - 1
—%u-drz—.(f—VP-drz——jgszO
dt p p

Therefore, if p is constant, the circulation does not change. This is known as Kelvin’s theorem.
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6 BOUNDARY LAYER THEORY

6.1 HIGH REYNOLDS NUMBER FLOW OVER A FLAT PLATE PARALLEL TO FLOW
Recall from transport phenomena that the vorticity diffusion due to viscosity can be thought of as

(penetration depth of vorticity diffusion over time t) ~ vt
This relationship will prove quite useful.

Consider a flat plate of very small thickness and a length 2. It is placed in a steady uniform stream of fluid
(with speed U), with the stream parallel to the length. In the absence of any effects of viscosity, the plate
causes no disturbance to the stream and the fluid velocity is uniform. However, real fluids have no-slip
boundary conditions that slow down the fluid near the liquid-solid interface. The boundary layer thickness
will be small compared to length [ provided that £U /v > 1. The velocity just outside the boundary layer is
effectively unchanged and is therefore equal to U. The pressure outside the boundary layer is also uniform
and is approximately uniform throughout the boundary layer as well. We can postulate that the boundary
layer thickness would be given by*

5 ~ vt ~ Jvx/U

This then says that the further away from the leading edge of the plate you are, the larger the boundary layer
thickness, as would be expected. The stress can be estimated as

nu 3 1 1 13 1
Twall ~7~7}U2V 2x 2 ~ pv2U2x 2
The exact solution is
1
ou 0.33 1U§ 3 0.33nU Uy
Twall = n(—) = (). pv2 2x 2 =0. n (—)
wa 0y/ - vx

The velocity can be found from the stress by integrating, which yields
13 1
u=033v 2U2x 2y+C
To find the constant, we employ the no-slip boundary condition, which yields ¢ = 0.

13 1
u=0.33v 2U2x 2y

The drag force per unit length exerted on the two sides of the plate is given by

¢
131
Fp per width = 2 f Twall dx = 1.33pv2Uz2L2
0

As such, the drag force on a plate of width L, that becomes?

133
Fp = 1.33pv2U2L2

! Note that if we have a disk spinning in a fluid, we replace U with Qx to arrive at § ~ \/v/Q.
1 3 1
2 More generally, for a width W, it is F, = 1.33pvzUzW Lz
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If one wants to write the boundary layer equations (the analogous to the Navier-Stokes equation), we note
that the velocity gradient in the x direction is significantly smaller than that in the y direction. If we start
with the Navier-Stokes equation in the x direction as

( ou, N 6ux> _ P N 0%u, N 0%u,
P Mgy T Wy dy /)  ox T\ ax2 dy?
we will see that the 92w, /dx? term in the Laplacian can be ignored since the velocity gradient in x is small.

Note that the % term in the left-hand side of the equation cannot be dropped because u,, is small and
therefore u, du,/dx is not significantly smaller than u,, du, /dy. Therefore,

ou, ou,  0%u, 10P

Ux gy Ty dy -V dy?2  pox
From Bernoulli’s equation, we know that P + %pU 2 = constant. Taking the x derivative of both sides
yields

1
P d (7pU2 + C)
dx dx
This becomes

dP du

— U N
dx p dx
We can substitute this into the boundary layer equation to arrive at

ou, N Ou,  0%uy, UdU
gy T dy Vayz C dx

If U is constant, then

) ou, u ou, _ Va2ux
Yox 7Y ay dy?

Naturally, the continuity equation can also be written and is given by

ou, Ou,

6x+6y 0

While these equations are originally derived for a flat plate, they also apply to flow around a cylinder
oriented in the same direction as the plate. In that case, x is the distance from the leading edge of the cylinder
whereas v is the distance normal to the surface of the cylinder.

6.2 Low REYNOLDS NUMBER FLOW OVER A FLAT PLATE (ANY DIRECTION)

For a similar flat plate as the previous scenario but now in low Reynolds flow and oriented in any direction
(not necessarily parallel to flow), we know that the left-hand side of the Navier-Stokes equation becomes
zero due to the creeping flow approximation. As such,

0 =-VP +nV2u
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We can do dimensional analysis to find the drag force. We expect the force to be a function of L, U, and .
Importantly, it is not a function of p since that term drops out at low Reynolds numbers. We then find that
F; ~ nul

The difference between a parallel and perpendicular plate is just a numerical factor:

Fd,parallel _ 1
F d,perp 2

6.3 HIGH REYNOLDS NUMBER FLOW OVER A FLAT PLATE PERPENDICULAR TO FLOW
Let us recall from the prior section that the flow around a body at high Reynolds number creates a boundary
layer forms in the wake of the object.

-~ —_—

The area where vorticity is not zero (inside the layer) is called the vortex sheet. Outside the vortex sheet,
the vorticity is zero. This means that the velocity can be written as the gradient of a potential function
outside the boundary layer:

u=Vvep
and since divergence of velocity is zero
Vip =0

Further, outside the boundary layer we know that the Bernoulli equation applies. A general approach to
boundary layer problems is then as follows:

1. Since the boundary layer is thin at Re — oo, find the velocity profile in the irrotational region by
solving V2¢ = 0 outside the body

2. Find the pressure outside the boundary layer by using Bernoulli’s equation (it is approximately the
same as the pressure inside the boundary layer but Bernoulli’s equation does not apply there)

3. Solve the boundary layer equations of motion and find shear stresses as needed

It can be shown that the drag force of a plate perpendicular to high Reynolds number flow is
1
Eiuzpuﬁﬁ

As such,

1 3 3
Fd,parallel pv2U2L2 1 1 1

1
xv2l 2L 2=—xK1
Fg1 pUZL? vRe

This shows that a parallel plate in high Reynolds number flow has effectively no drag force compared to a
plate perpendicular to the follow.
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7 APPENDIX: VECTOR CALCULUS
7.1 COORDINATE SYSTEMS

7.1.1 CARTESIAN COORDINATE SYSTEM
The following diagram is a schematic of the Cartesian coordinate system.

X
With this definition, the position vector in Cartesian coordinates is
r=xX+yy+2z2

7.1.2 CYLINDRICAL COORDINATE SYSTEM

The following diagram is a schematic of the cylindrical coordinate system. Take note that the standard
definition is that the sign of the azimuth is considered positive in the counter clockwise direction.

z
P
Q
|
|z
I
~ | s Yy
wF )
9/‘)\\\ I,
s
RN '

With this definition, the position vector in cylindrical coordinates is
F=rf+z2

To convert from cylindrical coordinates to Cartesian coordinates,
X =rcosf
y =r71sinf

zZ=1Z
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7.1.3 SPHERICAL COORDINATE SYSTEM

The following diagram is a schematic of the spherical coordinate system. Note that many mathematics
textbooks use a slightly different convention by swapping the definitions of 6 and ¢. Take note that the
standard definition is that the sign of the azimuth is considered positive in the counter clockwise direction
and that the inclination angle is the angle between the zenith direction and a given point.

With this definition, the position vector in spherical coordinates is
7 =rf
To convert from spherical coordinates to Cartesian coordinates,
X =7rsinf cos ¢
y =rsinfsing
z=rcosf

7.1.4 SURFACE DIFFERENTIALS
The surface differentials, dS, in each of the three major coordinate systems are as follows.

Coordinate system Surface differential, dS
Cartesian (top, i = 2) dx dy
Cartesian (side, i = ) dx dz
Cartesian (side, 1 = X) dy dz
Cylindrical (top, 71 = 2) rdrdf

Cylindrical (side, i = 7) rdf dz

Spherical (7 = #) r2sinf df d¢

7.1.5 VOLUME DIFFERENTIALS
The volume differentials, dV, in each of the three major coordinate systems are as follows.

Coordinate system Volume differential, dV
Cartesian dx dy dz
Cylindrical rdrdfdz

Spherical r?sin@ dr df d¢
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7.2 MATHEMATICAL OPERATIONS

7.2.1 MAGNITUDE
The magnitude of a vector is its length and can be computed as the following.

9] = /vf +vf + v

In the Cartesian coordinate system
In the cylindrical coordinate system

In the spherical coordinate system

7.2.2 Dot PRrRODUCT
The dot product of two vectors is

The dot product of a tensor with a vector, such as f = & - 7 is what one would expect from matrix algebra:
fi Oii Oij O ny
f2|= (Gﬁ 9jj Ujk> . ("2)
f3 Oki Okj Okk n3

7.2.3 CROSS PRODUCT

In matrix notation, the cross product is

~

ik
Uxv =det| w; w w; | = (wvr — wev)l + (Wevi — wvp)f + (wvy — )k
Vi Uj Uj

where i, j, and k represent the three coordinates in the given coordinate system.

7.3 OPERATORS

7.3.1 GRADIENT
The gradient is a mathematical operator that acts on a scalar function and is written as grad(f) or Vf. The
result is always a vector. It is essentially the derivative applied to functions of several variables.

In Cartesian coordinates, the gradient is

of of of
rad(f)=—X+—y+—72
grad(f) OX 8yy 0z
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In cylindrical coordinates, the gradient is

grad(f)—qr+li9+q2
o rog oz

In spherical coordinates, the gradient is

grad(f)_—r+lié+ L o
o roe rsinfogp

7.3.2 DIVERGENCE

The divergence is a mathematical operator that acts on a vector function and is written as div(¥) or V - ¥.
The result is always a scalar. The divergence represents the flux emanating from any point of the given
vector function (essentially, a rate of loss of a specific quantity).

In Cartesian coordinates, the divergence is

ov
divw) = ey Ny, Yo
ox oy oz
In cylindrical coordinates, the divergence is
div) =12 (v, )+ S+ &
ror 00 oz

In spherical coordinates, the divergence is

)

——(V,sin0)+—
rsiné oo rsiné og¢

div(V) zr—lzg(rzvr%

7.3.3 CURL
The curl is a mathematical operator that acts on a vector function and is written as curl(¥) or Vx#. The
result is always a vector. The curl represents the infinitesimal rotation of a vector function.

In Cartesian coordinates, the curl is

_ ov, ov, ), (ov, ov,\, [0V, ov, ),
curl(V) =| —%——=|X+ g - 3
oy oz 0z OX ox oy

In cylindrical coordinates, the curl is

curl(v) = (1ﬂ 8er (ﬂ avj9+1(8(rv9)_%j

00 oz oz or
In spherical coordinates, the curl is

1 [8(v¢sin0)%}+[ 1 av, 16(r, )Jml[a(rv@)_a\/,j

rsiné 00 o rsmea_gzﬁ_F or

<o

curl(v) =
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7.3.4 LAPLACIAN
The Laplacian is a mathematical operator that acts on a scalar function and is written as V2f. The result is
always a scalar. It represents the divergence of the gradient of a scalar function.

In Cartesian coordinates, the Laplacian is

o’f o°f o°f
2 + 2 + 2

ox- oy- oz

Vif =

In cylindrical coordinates, the Laplacian is

sz_lg(r@j 1 0%f O*f
ror\ or

+_
r’ 00> oz°

In spherical coordinates, the Laplacian is

2
V2§ =%g(r2ij+ 21_ i(sinei}%q
ror\_ or) r°sind o6 00 ) resin“@ o¢

7.4 COMMON IDENTITIES OF SECOND DERIVATIVES
The following identities are useful when dealing with second derivative terms. For a scalar field f,

div(grad(f)) = V3f
curl(grad(f)) = 0

Further, for a vector field f

div (curl(f)) =0
V2f = grad (div(f)) — curl (curl(f))

In the special case of divergenceless velocity (from the continuity equation), we can then make the
simplification that V2% = —curl(curl(#)) = —curl(w).

7.5 SURFACE INTEGRATION

7.5.1 THE SURFACE INTEGRAL

The surface integral is a generalization of multiple integrals to integration over surfaces. It is the two-
dimensional extension of the one-dimensional line integral. The notation of the surface integral is not agreed
upon. Some texts using a double integral with an S beneath to indicate a surface integral, whereas other
texts use the symbol for a line integral — an integral with a circle around the center — to represent surface
integrals as well. Some other texts using a double integral with a circle around it. They all mean the same
thing.

The surface integral of a scalar field is written and computed as

F=#fw
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The surface integral of a vector field cannot be as easily computed. If one wants to compute the surface
integral of, say, the force (which is a vector), one needs to convert it first to a scalar and then apply the
direction at the end of the computation. As such, the general method of doing the surface integral of a vector

is to say
F=#f.12ds

where k is in the same direction as F is anticipated to be in. In the special case of k = 7, this surface integral
is called the flux

Flux=#f-ﬁd5

To make the computation of surface integrals easier, common systems and their corresponding dS
equivalents are included in section 1.1.4. You can then simply substitute in for the surface element dS in
the integral to convert it to a standard double integral and then apply the appropriate bounds. For surface
integrals of vector fields, be sure to substitute in the appropriate normal vector for the coordinate system.

Note that if the vector field is given in terms of f (x,y,2z) = aX + By + yZ but you are setting up the surface
integral for spherical coordinates (e.g. flux along the surface of a sphere), the normal vector is i = 7 but it
is not apparent how to calculate the dot product of something with a Cartesian unit vector and spherical unit
vector. To resolve this difference in coordinate systems, you will need to convert the normal vector into
Cartesian coordinates. This can be done by recognizing that # = 7/|7| = sin@ cos ¢ £ + sinfsin¢ § +
cos 6 2, and then the dot product can be appropriately taken.

7.5.2 DIVERGENCE THEOREM
The divergence theorem can convert a surface integral into a volume integral when applied to a vector field

Via
#f-ﬁd5= ff div(f) dvV

The volume integral can be computed by substituting in the appropriate volume element dV and including
the appropriate bounds.

7.6 STOKES' THEOREM
Stokes’ theorem states can convert a surface integral into a line integral when applied to the curl of a vector
field via

ﬁ(wﬁ)-ms:ff-df
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8 APPENDIX: PRACTICAL PROBLEM SOLVING METHODS

8.1 DERIVING EXPRESSIONS FOR VELOCITY, PRESSURE, AND STRESS

With these tools at our disposal, we can solve many types of fluid mechanics problem. The general approach
has been outlined below. They will then be used in the following examples. Tabulated expressions for the
Navier-Stokes equation and Newton’s Law of Viscosity are included in the Appendix.

1.

2.
3.
4

7.

Choose an appropriate coordinate system

Determine the direction of flow in this coordinate system (I refer to this as the j direction)

Use the continuity equation to provide further simplifications to the system

Use physical details from the problem statement and the result of the continuity equation to
determine which direction the velocity is a function of (I refer to this as the i direction)

For the velocity distribution, solve the Navier-Stokes equation in the direction of fluid flow (the j
direction)

For the pressure distribution, solve the Navier-Stokes equation in the direction that the pressure is
a function of

For the stress, 7;;, substitute the velocity distribution into Newton’s Law of Viscosity

8.2 COMMON BOUNDARY CONDITIONS
The following are some of the most common boundary conditions (BC’s) used in fluid mechanics and help
in determining the constants of integration when the Navier-Stokes equation is solved.

At a solid-liquid interface, the fluid velocity equals the velocity with which the solid surface is
moving (in the common case that the solid interface is stationary, then the fluid velocity is zero at
the interface). This is called the no-slip boundary condition

The inlet or outlet boundary conditions may be explicitly specified

If there is creeping flow around an object, consider the conditions infinitely far out

If the surface of a fluid is exposed to the atmosphere, the pressure at the surface is therefore Py,
At a liquid-gas interface that is oriented in a direction x, the stresses 7,,, and 7,., are approximately
zero, assuming the gas-side velocity gradient is not sufficiently large

Check for unphysical terms. For instance, if an equation has a C In(x) term in it, then if x = 0 is
physically allowed then C = 0 in order to make the equation physically realizable.

8.3 USING NEWTON’S LAW OF VISCOSITY
As derived previously, Newton’s Law of Viscosity is

T = pu(vi + vu')

This equation is written in its most general form and is a bit cumbersome to use in this way. | will show
this cumbersome way first and then explain how to use it in a practical way.

Rigorous Way:

You must write out the full expression for the stress vector as defined above. For Cartesian coordinates,
this would be
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aux aux aux aux auy auz
ox Oy 0z dx Ox  Ox
ou, OJu, OJu, du, Odu, Ou, |

dy
Ju,

0z
Ju,

| +

dy
ou,

dy

T = |

tTH I dx dy
du, ou, OJu,
dx dy 0z 0z 0z 0z

Then, based on the problem, cancel relevant terms that go to zero and you have your expression for the
stress.

Practical Way:

1. Determine what direction the velocity is a function of (I refer to this as the i direction)

2. Determine the direction of flow in the coordinate system of choice (I refer to this as the j direction)

3. The stress tensor is then written as 7;; and represents the stress on the positive i face acting in the
positive j direction®

4. The expression of 7;; can then be more simply expressed as 7;; = u(V;u; + Vu;). Here, | have
introduced my own short-hand notation. The operator V; represents the gradient operator in the i
direction and u; represents the velocity in the j direction. Of course, if there is more than one i
and/or j values (e.g. if the fluid velocity is in greater than one dimension) you will need more than
one expression for t;;

8.4 CALCULATING MEAN VELOCITY AND FLOW RATE
To calculate the mean velocity through a given area, simply divide the total volumetric flow rate by the
cross-sectional area:

_ ffudA
~ Jfaa

using the appropriate dA elements for the given coordinate system.

(u)

To calculate the volumetric flow rate through a cross-section once the mean velocity is known, this can
typically be found by multiplying the mean velocity in the cross-section by the cross-sectional area. More
generally speaking, the volumetric flow rate can be found by

Q=ﬂmmA

To find the mass flow rate, simply multiply the volumetric flow rate by density.

3 Note that many textbooks, most notably BSL, define the stress tensor differently with a negative sign in the front.
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9 APPENDIX: TABULATED EXPRESSIONS

9.1 EXPRESSIONS FOR NEWTON’S LAW OF VISCOSITY
Recall that Newton’s Law of Viscosity is

T=p(Vi+vah)
and that this can be rewritten as
Tij = ,u(Vluj + V]ul)

9.1.1 CARTESIAN COORDINATES

ou ou

u u

ou, auz)

=t = (T

9.1.2 CYLINDRICAL COORDINATES

Jd ugy 1lou
Tro = Tor =H(T§(—) +- r)

T r 00
10u, OJduy

Toz = Tz =“(; 36 +E)
du, OJdu,
Tzr:TrZ:M(az + ar)

9.1.3 SPHERICAL COORDINATES

d ,ug 10u,
to =70, = (3 (5) 47 57)

_ B (Sin96(u¢)+ 1 aug)
toe =190 =K\ 759 Ging/ " 7sing 04

1 Jdu, 0 (ug
for = Tr¢ = M(rsin@ op +r§(7))

9.2 EXPRESSIONS FOR THE CONTINUITY EQUATION
Recall that the continuity equation states

dp
—+V-pu=0
6t+ pu

9.2.1 CARTESIAN COORDINATES

+—( )+a( )+a( )=0
ot ax P T gy \Py) TG WP =
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9.2.2 CYLINDRICAL COORDINATES

10 10
3¢ T 7y (prun) + 225 (pug) + - (Puz) =0
9.2.3 SPHERICAL COORDINATES

ap 1 1 n) +
at r26 (p fup) + rsm969(pu9Sl )

7sin6 ag (p up) =

9.3 EXPRESSIONS FOR THE NAVIER-STOKES EQUATION
The Navier-Stokes equation for an incompressible fluid is

au 2= -
p e +U-Vi|=-VP+uV*u+pg

9.3.1 CARTESIAN COORDINATES

av1+ c?v,+ c?vx+ adv.
Aot " ex Ty T

azv azv;
gy TH ) yz + * P8«

(605, gv, v avy) ap l'a‘*v, 2o v, ., 32v_,,_ .
P Tay Ml e a2 P

ap —6202 0%, é‘zv

9.3.2 CYLINDRICAL COORDINATES

av, v, vy dv, v, v a
ﬂ(_+ r+_9_+ _ﬂ): _.._E+u|:£. %i(mr))_p

v, o p
L .

gt "V ar Trae %z T T ar ar\r ar 2 PR NT"
v, vy Uy AV vy v\ 19p af1a 1%, d7v, 2 v,
‘”( T YT Tt r)‘ rap M ar\rar )t aa Yo t et ese

3‘0+ avz+_.,av-+ ;) _ _6_p+ 19 (, 7\, 1 =+6'2v3+
Par " TTae T Y a: K r 220 a2 | P

9.3.3 SPHERICAL COORDINATES

S L L S %+ Ui) -
at ar T 30  rsin 6 dd r ar
14 1 4 1 %,
B O SPY S I YD
s | r?ar? r? sin @ 90 At ¥ sin® 6 a* P8
{?U‘ﬂ (?Uﬂ Uy 3'.«',5 Uy BI'B 0o - E’.ﬁ cot 9) 1 [}P
pl— 17, + — + - s o — =
ot ar r a8  rsin 6 ad r r gt
1af{. )\, 1af 1 1 Pv 20 2 cotf 9
+pls=lrr—)+== vy sin 6) —— — -
#_rzar( 5") rzﬂﬂ(mn ﬂ.}ﬁl{" ) r’ sin 66@5- P20 7 sin § dd fge
v, dvy v, IV, vy, dv, UU. + v, cot 6‘) 1 6p
pl——+o,—/—t+ - — + ——— — 4 =
at ar r a8 rsin 8 do r r sin 6 dd

1 ¢ 2 rh%) N 14 ( 1 E] . ) 1 szqh 2 U, 2 cot § 9
tul s \r=s ) tsmlomWsn® )| +5———+= — + — |+
'ulirz 5‘?'( ar r2df \ sin 600 ° r’sin?@ b risin #dd ¢’ sin 0 I PRs



