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1 Dimensional Analysis and Scale-Up

1.1 Procedure
1. To solve a problem using dimensional analysis, write down all relevant variables, their corresponding

units, and the fundamental dimensions (e.g. length, time, mass, etc.)

(a) Some important reminders: a newton (N) is equivalent to kg m s−2, a joule (J) is equivalent to
kg m2 s−2, and a pascal (Pa) is equivalent to kg m−1 s−2

(b) µ =
[
ML−1t−1

]
, P =

[
ML−1t−2

]
, F =

[
MLt−2

]
, Power =

[
ML2t−3

]
2. The number of dimensionless groups that will be obtained is equal to the number of variables minus

the number of unique fundamental dimensions

3. For each fundamental dimension, choose the simplest reference variable

(a) No two reference variables can have the same fundamental dimensions

4. Solve for each fundamental dimension using the assigned reference variables

5. Solve for the remaining variables using the previously defined dimensions

6. The dimensionless groups can then be computed by manipulating the algebraic equation created in
Step 5

7. If scaling is desired, one can manipulate the constant dimensionless equations

1.2 Example
Consider a fan with a diameter D, rotational speed ω, fluid density ρ, power P , and volumetric flow rate of
Q. To solve for the dimensionless groups that can be used for multiplicative scaling, we implement the steps
from Section 1.1:

Variable Unit Fundamental Dimension
D m L
ω rad/s t−1

ρ kg/m3 m ·L−3

Q m3/s L3 · t−1

P W m ·L2 · t−3

1. Create a table of the variables, as shown above

2. The number of dimensionless groups can be found by: 5 variables - 3 fundamental dimensions = 2
dimensionless groups

3. The reference variables will be chosen as D, ω, and ρ for length, time, and mass, respectively

4. Each fundamental dimension can be represented by L = [D], m =
[
ρD3

]
, and t =

[
ω−1

]
5. The remaining variables can be solved by [Q] =

[
D3ω

]
= L3 · t−1 and [P ] =

[
ρP 3D5ω3

]
= m ·L2 · t−3

6. The two dimensionless groups can therefore be found as N1 = QD−3ω−1 ≡ Q−1D3ω and N2 =
Pρ−1D−5ω−3 ≡ P−1ρD5ω3
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2 Introduction to Fluid Mechanics

2.1 Definitions and Fundamental Equations
• Newtonian fluids exhibit constant viscosity but virtually no elasticity whereas a non-Newtonian fluid
does not have a constant viscosity and/or has significant elasticity

• Pressure is equal to a force per unit area but is involved with the compression of a fluid, as is typically
seen in hydrostatic situations

– Pressure is independent of the orientation of the area associated with it
– Additionally, F = P dA

• For a velocity, v, the volumetric flow, Q, through a plane must be,

Q =

ˆ
v dA→ vA

• A mass flow rate can be defined as

ṁ =

ˆ
ρv dA→ ρvA = ρQ

• Similarly, a mass of a vertical column of liquid with height z can be found as

m = ρV = ρAz

• Specific gravity with a water reference is defined as

s =
ρi

ρH2O

• The Reynolds Number is defined as the following where L is the traveled length of fluid or diameter
for a pipe system

Re =
ρvL

µ

2.2 Hydrostatics
2.2.1 Pressure Changes with Elevation

• For a hydrostatic situation, it is important to note that
∑
F = ma = 0

• Since pressure changes with elevation,
dP

dz
= −ρg

– At constant ρ and g, the above equation becomes the following when integrated from 0 to z

P = ρgz + Psurface

• The potential, Φ, of a fluid is defined as

Φ = P + ρgz = constant

– This is only true for static liquids with free motion (no barriers) and where z is in the opposite
direction of g

• For a multiple fluid U-tube system, the force on the magnitude of the force on the left side must equal
the magnitude of the force on the right side
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– Therefore, for U-tube with the same area on both sides, the pressure on the left column must
equal the pressure on the right column

– Another way to solve this problem is to realize that Φ at the top of a liquid is the same as Φ at
the bottom of the same liquid

– The density of air is very small, so ρair can be assumed to be approximately zero if needed

2.2.2 U-Tube Example

Find ρoil in the diagram below if z1→2 = 2.5 ft, z1→3 = 3 ft, z1→bottom = 4 ft, and z4→bottom = 3 ft:

1. Since
∑
F = 0 for this system and the area is the same on both sides of the U-tube, P1 = P4

2. Equating the two sides yields

P1 + ρoilg (2.5 ft) + ρairg (3 ft− 2.5 ft) + ρwaterg (4 ft− 3 ft) = ρwaterg (3 ft) + P4

(a) Note that the depths here are not depths from the surface but, rather, the vertical height of each
individual fluid

3. Since P1 = P4 and s =
ρspecies

ρwater
,

soilg (2.5 ft) + sairg (0.5 ft) + swaterg (1 ft) = swaterg (3 ft)

4. Canceling the g terms, substituting swater ≡ 1, and assuming sair ≈ 0,

soil =
3 ft− 1 ft

2.5 ft
= 0.8

2.2.3 Force on a Dam

• The force on a dam can be given by the following equation where the c subscript indicates the centroid

F = ρghcA = PcA

• For a rectangle of depth D,

hc =
1

2
D

• For a vertical circle of diameter D or radius r,

hc =
1

2
D = r

• For a vertical triangle with one edge coincident with the surface of the liquid and a depth D,

hc =
1

3
D

• The centroid height can be used on any shaped surface. What matters is the shape of the projection
of the surface. For instance, a curved dam will have a rectangular projection, and hc for a rectangle
can be used
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2.2.4 Archimedes’ Law

• An object submerged in water will experience an upward buoyant force (has the same magnitude of the
weight of the displaced fluid), and at equilibrium it will be equal to the weight of the object downward

• For a submerged object of volume Vo in a fluid of density ρf ,

Fbuoyant = ρfgVo = ρgzA

2.2.5 Buoyancy Example

Consider the system below, which is a system of two immiscible fluids, one of which is water (w) and the
other is unknown (u). At the interface is a cylinder, which is one-third submerged in the water layer. If the
specific gravity of the cylinder is 0.9, find the specific gravity of the unknown:

1. The buoyant force is due to both fluids, so Fb = ρwgAo

(
1

3

)
+ ρugAo

(
2

3

)

2. The weight of the object is Fo = mog = ρoAo

(
1

3
+

2

3

)
3. Equating Step 1 and Step 2 yields, dividing by ρw to create specific gravity yields, and canceling out

Ao and g yields
(

1

3

)
sw +

(
2

3

)
su = so

4. The problem statement said that so = 0.9 and sw ≡ 1, so solving for su yields su = 0.85

3 Shear Stress and the Shell Momentum Balance

3.1 Types of Stress
• Newton’s Law of Viscosity states that the viscous stress is given by the following (in Cartesian coor-
dinates)

τij = −µ
(
∂vj
∂i

+
∂vi
∂j

)
• A tensor of τij simply indicates the stress on the positive i face acting in the negative j direction

• To visualize this easier,

τxy = τyx = −µ
[
∂vy
∂x

+
∂vx
∂y

]
τyz = τzy = −µ

[
∂vz
∂y

+
∂vy
∂z

]
τzx = τxz = −µ

[
∂vx
∂z

+
∂vz
∂x

]
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3.2 Shell Momentum Balance
3.2.1 Procedure

1. Choose a coordinate system

2. Find the direction of fluid flow. This will be the direction that the momentum balance will be performed
on as well as j in τij . The velocity in the j direction will be a function of i. This i direction will be
the dimension of the shell that will approach zero

3. Find what the pressure in the j direction is a function of (the direction in which ρgh plays a role)

4. A momentum balance can be written as∑
in

(ṁv)−
∑
out

(ṁv) +
∑
sys

F = 0

• Frequently, this is simplified to a force balance of∑
sys

F = 0

• The relevant forces are usually Fgravity = ρgV , Fstress = Aτij , and Fpressure = PA

– Fgravity is positive if in the same direction of the fluid flow and negative otherwise

5. Divide out constants and let the thickness of the fluid shell approach zero

6. Use the definition of the derivative

f ′(x0) ≡ lim
h→0

f(x0 + h)− f(x0)

h

7. Integrate the equation to get an expression for τij

(a) Find the constant of integration by using the boundary condition

8. Insert Newton’s law of viscosity and obtain a differential equation for the velocity

9. Integrate this equation to get the velocity distribution and find the constant of integration by using
the boundary condition

(a) To find the average value of the velocity,

〈vi〉 =

˜
D
vidA˜
D
dA

3.2.2 Boundary Conditions

The following boundary conditions are used when finding the constant(s) of integration. Note that at this
point, we are no longer dealing with an infinitesimal shell but, rather, the system as a whole

• At solid-liquid interfaces, the fluid velocity equals the velocity with which the solid surface is moving

• At a liquid-liquid interfacial plane of constant i (assuming a coordinate system of i, j, and k), vj and
vk are constant across the i direction as well as any stress along this plane

• At a liquid-gas interfacial plane of constant i (assuming a coordinate system of i, j, and k), τij and τik
(and subsequently τji and τki) are zero if the gas-side velocity gradient is not large

8



• If there is creeping flow around an object, analyze the conditions infinitely far out (e.g. r → ∞ for
creeping flow around a sphere)

• It is also important to check for any unphysical terms. For instance, if it is possible for x to equal zero,
and the equation has a C ln (x) term in it, then C = 0 since ln (0) is not possible and thus the term
should not even exist

3.3 Flow of a Falling Film
Consider the following system where the z axis will be aligned with the downward sloping plane and its
corresponding “shell” shown on the right (graphic from BSL):

1. Cartesian coordinates will be chosen. The direction of the flow is in the z direction, so this will be
the direction of the momentum balance. vz(x), so the relevant stress tensor is τxz, and ∆x will be the
differential element

2. P (x), so it is not included in the z momentum balance

3. Set up the shell balance as

LW
(
τxz
∣∣
x
− τxz

∣∣
x+∆x

)
+ ρ∆xLWg cosβ = 0

4. Dividing by LW∆x and then letting the limit of ∆x approach zero yields1

lim
∆x→0

(
τxz
∣∣
x+∆x

− τxz
∣∣
x

∆x

)
= ρg cosβ

5. Note that the first term is the definition of the derivative of τxz, so

dτxz
dx

= ρg cosβ

6. Integrating this equation yields τxz = ρgx cosβ + C1, and C1 = 0 since τxz = 0 at x = 0 (liquid-gas
interface)

τxz = ρgx cosβ

7. Inserting Newton’s law of viscosity of τxz = −µdvz
dx

yields
dvz
dx

= −
(
ρg cosβ

µ

)
x for the velocity

distribution

8. Integrating the velocity profile yields vz = −
(
ρg cosβ

2µ

)
x2 +C2, and C2 =

(
ρg cosβ

2µ

)
δ2 since vz = 0

at x = δ if δ is the depth in the x direction of the fluid film

vz =
ρgδ2 cosβ

2µ

[
1−

(x
δ

)2
]

1Note the rearrangement of terms required so that the definition of the derivative has τxz
∣∣
x+∆x

− τxz
∣∣
x
and not τxz

∣∣
x
−

τxz
∣∣
x+∆x
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3.4 Flow Through a Circular Tube
Consider the following system (graphic from BSL)

1. This problem is best done using cylindrical coordinates. The fluid is moving in the z direction, vz =
vz(r), and thus the j tensor subscript is equal to z and i is r. Therefore, the only relevant stress is τrz.
Also, P (z). A z momentum balance will be performed with a differential in the r direction. The force
of gravity is in the same direction of fluid flow, so it will be positive

2. Setting up the shell balance yields2

(2πrLτrz)
∣∣
r
− (2πrLτrz)

∣∣
r+∆r

+ 2πr∆r (P0 − PL) + 2πr∆rLρg = 0

3. Dividing by 2πL∆r, letting the thickness of the shell approach zero, and utilizing the definition of the
derivative yields

d (rτrz)

dr
=

(
P0 − PL

L
+ ρg

)
r

4. While it’s algebraically equal to the above equation, a substitution of modified pressure3 can generalize
the equation as

d (rτrz)

dr
=

(
P0 −PL

L

)
r

5. Integrating the above equation yields τrz =
r (P0 −PL)

2L
+
C1

r
, and C1 = 0 since τrz = ∞ at r = 0,

which is impossible, so

τrz =

(
P0 −PL

2L

)
r

6. Using Newton’s law of viscosity of τrz = −µ
(
dvz
dr

)
yields

dvz
dr

= −
(

P0 −PL

2µL

)
r

2Note that you cannot do 2πrL
(
τrz

∣∣
r
− τrz

∣∣
r+∆r

)
3The modified pressure, P, is defined as P = P + ρgh where h is the distance in the direction opposite of gravity. In this

problem, P = P − ρgz since height z is in the same direction as gravity
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7. Integrating the above equations yields vz = −
(

P0 −PL

4µL

)
r2 + C2, and C2 =

(P0 −PL)R2

4µL
since

the solid-liquid boundary condition states that vz = 0 at r = R, so

vz =
(P0 −PL)R2

4µL

[
1−

( r
R

)2
]

3.5 Flow Through an Annulus
Consider the following system where the fluid is moving upward in an annulus of height L (graphic from
BSL)

1. This problem is best done using cylindrical coordinates. The fluid is moving in the z direction, so the
momentum balance is in the z direction with a differential in the r direction. vz(r), so the only relevant
stress is τrz. Also, P (z), and the force of gravity is negative since it’s in the opposite direction of fluid
flow

2. The shell balance can be written as

2πr∆rP0 − 2πr∆rPL + 2πrτrz
∣∣
r
− 2πrLτrz

∣∣
r+∆r

− ρ2πrL∆rg = 0

3. Dividing by 2πL∆r yields

−r
(
τrz
∣∣
r+∆r

− τrz
∣∣
r

)
∆r

+
r (P0 − PL)

L
− ρgr = 0

4. Letting the limit of ∆r approach zero, and applying the definition of the derivative yields

d (rτrz)

dr
=
r (P0 − PL − ρg)

L

5. Substituting the modified pressure yields4

d (rτrz)

dr
=

(
P0 −PL

L

)
r

4Note here that P = P + ρgz since the z height is in the opposite direction of gravity
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6. Integrating the above equation yields

τrz =

(
P0 −PL

2L

)
r +

C1

r

7. The constant of integration cannot be determined yet since we don’t know the boundary momentum
flux conditions. We know that the velocity only changes in the r direction, so there must be a maximum
velocity at some arbitrary width r = λR, and at this point there will be no stress. This is because τij
is a function of the rate of change of velocity, and since the derivative is zero at a maximum, the stress
term will go to zero. Therefore,

0 =

(
P0 −PL

2L

)
λR+

C1

λR

8. Solving the above equation for C1 and substituting it in yields

τrz =
(P0 −PL)R

2L

[( r
R

)
− λ2

(
R

r

)]

9. Using τrz = −µdvz
dr

and integrating
dvz
dr

yields

vz = − (P0 −PL)R2

4µL

[( r
R

)2

− 2λ2 ln
( r
R

)
+ C2

]
10. The boundary conditions state that vz = 0 at r = κR and vz = 0 at r = R (solid-liquid interfaces),

which yields a system of equations that can be solved to yield C2 = −1 and λ2 =
1− κ2

2 ln

(
1

κ

)
11. Substituting the results from above yields the general equations of

τrz =
(P0 −PL)R

2L

( rR)− 1− κ2

2 ln

(
1

κ

) (R
r

)

vz = − (P0 −PL)R2

4µL

1−
( r
R

)2

− 1− κ2

ln

(
1

κ

) ln
( r
R

)
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4 Mass, Energy, and Momentum Balances

4.1 Mass and Energy Balance
• For mass balances, ∑

ṁin −
∑

ṁout =
d

dt
(m)system =

d

dt
(ρV )system

• For energy balances with heat (q) and work5 (w),

q − w +
∑

Ein −
∑

Eout =
d

dt
(Esys)

• Therefore, a general equation can be written as the following where ê is the internal energy per unit
mass,∑

min

(
ê+

P

ρ
+ gz +

1

2
v2

)
in

−
∑

mout

(
ê+

P

ρ
+ gz +

1

2
v2

)
out

+q−w =
d

dt

[
msys

(
ê+ gz +

1

2
v2

)]
sys

• Power can be written as
Power = ṁŵ = Fv = Q∆P

4.2 Bernoulli Equation
• At steady state conditions, the general equation for the mass-energy balance of an inlet-outlet system
can be written as the following

ê1 +
v2

1

2
+ gz1 +

P1

ρ1
+ q = ê2 +

v2
2

2
+ gz2 +

P2

ρ2
+ ŵ

• The energy balance simplifies to the mechanical energy balance with constant g and at steady-state
with F̂ representing frictional losses:

∆

(
v2

2

)
+ g∆z +

ˆ 2

1

dP

ρ
+ ŵ + F̂ = 0

– F̂ is always positive, ŵ is positive if the fluid performs work on the environment, and ŵ is negative
if the system has work done on it

– Note that F̂ is a frictional energy per unit mass. Recall that energy is
kgm2

s2
. Also, ŵ is energy

∗ Therefore, if one solves for F̂ , this value can be divided by g to get the “friction head,” which
has SI units of m

• If the fluid is incompressible, ρ is constant, so it becomes

∆

(
v2

2

)
+ g∆z +

∆P

ρ
+ ŵ + F̂ = 0

• For steady-state, no work, no frictional losses, constant g, and constant density (incompressible), the
Bernoulli Equation is obtained:

∆

(
v2

2

)
+ g∆z +

∆P

ρ
= 0

– For a problem that involves draining, if the cross sectional area of the tank is significantly larger
than the siphon or draining hole, v1 can be approximated as zero

5A positive work value indicates work done by the system while a negative work indicates work done on the system
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4.3 Momentum Balance
Of course, the momentum balance was already seen in the shell momentum balance section, but for clarity
it is included here as well (without assuming steady state conditions):

• Recall that momentum is:
M≡ mv

• Therefore, ∑
in

(ṁv)−
∑
out

(ṁv) +
∑
sys

F =
d

dt
(mv)sys ≡

dMsys

dt

– While it may seem impossible to add a force and momentum together, realize that is not what is
being done. Instead, it’s a mass flow rate times velocity, which happens to have the same units
of force, so addition can be performed

• Some forces that are relevant to fluid dynamics are∑
sys

F =
∑

gravity

F +
∑

pressure

F +
∑
visc.

F +
∑
other

F

5 Differential Equations of Fluid Mechanics6

5.1 Vectors and Operators
5.1.1 Dot Product

• If −→u = 〈u1, u2, u3〉 and −→v = 〈v1, v2, v3〉, then the dot product is

−→u · −→v = u1v1 + u2v2 + u3v3

5.1.2 Cross Product

• The cross product is the following where θ is between 0 and π radians

−→u ×−→v = (u2v3 − u3v2) î− (u1v3 − u3v1) ĵ + (u1v2 − u2v1) k̂

5.1.3 Gradient

• The ∇ operator is defined as

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

• The gradient of an arbitrary scalar function f(x, y, z) is

grad(f) = ∇f =
∂f

∂x
î+

∂f

∂y
ĵ +

∂f

∂z
k̂

5.1.4 Divergence

• For an arbitrary 3-D vector −→v , the divergence is

div (−→v ) = ∇ ·−→v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

6See Section 10 for equations written out for the various coordinate systems
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5.1.5 Curl

• The curl of an arbitrary 3-D vector −→v is

curl(−→v ) = ∇×−→v =

(
∂vz
∂y
− ∂vy

∂z

)
î+

(
∂vx
∂z
− ∂vz

∂x

)
ĵ +

(
∂vy
∂x
− ∂vx

∂y

)
k̂

5.1.6 Laplacian

• The Laplacian operator, ∇2, acting on an arbitrary scalar f(x, y, z) is

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

5.2 Solution of the Equations of Motion
• A differential mass balance known as the continuity equation can be set up as

∂ρ

∂t
+∇ · ρ−→v = 0

• If ρ is constant, then
∂ρ

∂t
= 0, and the ρ values can be factored out of the above equation to make

∇ ·−→v = 0

• For constant ρ and µ, the Navier-Stokes Equation states that

ρ

(
∂−→v
∂t

+−→v · ∇−→v
)

= −∇P + µ∇2−→v + ρ−→g

5.3 Procedure for Using Navier-Stokes Equation
1. Choose a coordinate system and find the direction of the flow

2. Use the continuity equation (making simplifications if ρ is constant) to find out more information

3. Use the Navier-Stokes equation in the direction of the fluid flow and eliminate terms that are zero
based on the direction of the flow and the results of the continuity equation

(a) Be careful to make sure that −→g is in the correct direction

4. Integrate the resulting equation and solve for the boundary conditions

5.4 Flow Through a Circular Tube Using Navier-Stokes
The problem in Section 3.4 can be revisited, as the Navier-Stokes equation can be used on problems where
the shell momentum balance method was originally used. For this problem, refer to the earlier diagram, and
assume the pressure drops linearly with length. Also assume that ρ and µ are constant:

1. The best coordinate system to use is cylindrical, and the continuity equation can be written as

∇ ·−→v =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
dθ

+
∂vz
∂z

= 0

2. The continuity equation turns into the following since velocity is only in the z direction:

∂vz
∂z

= 0
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3. Now the Navier-Stokes equation can be written in the z direction as

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
= −∂P

∂z
+ µ

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2

∂2vz
dθ2

+
∂2vz
∂z2

)
+ ρgz

4. The Navier-Stokes equation simplifies to the following since vz(r), vr = vθ = 0, and the linear change

in pressure means
∂P

∂z
=
PL − P0

L
:

0 = −PL − P0

L
+
µ

r

∂

∂r

(
r
∂vz
∂r

)
+ ρgz

5. Rearranging the above equation yields

1

µ

[
PL − P0

L
− ρgz

]
=

1

r

d

dr

[
r
∂vz
∂r

]
6. For simplicity’s sake, let the left-hand side equal some arbitrary constant α to make integration easier

α =
1

r

d

dr

[
r
∂vz
∂r

]
7. Integrating the above equation yields

αr2

2
= r

∂vz
∂r

+ C1

8. Integrating the above equation again yields

αr2

4
− C1 ln r + C2 = vz

9. At r = 0, the log term becomes unphysical, so C1 = 0. The equation is now

αr2

4
+ C2 = vz

10. There is a solid-liquid boundary at r = R, and vz = 0 here, so C2 = −αR
2

4
. Therefore,

vz =
αr2

4
− αR2

4
= α

(
r2 −R2

)
=

1

4µ

[
PL − P0

L
− ρgz

] (
r2 −R2

)
11. Substituting P = P − ρgz into this problem yields the same result as in Section 3.4

5.5 Flow Through a Heat-Exchanger
Consider a heat-exchanger as shown below with an inner radius of R1 and outer radius of R2 with z pointing
to the right. Fluid is moving to the right (+z) in the outer tube, and the fluid is moving to the left in the
inner tube (-z). Assume that the pressure gradient is linear and that R1 < r < R2:
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1. Cylindrical coordinates are best to use here, and velocity is only in the z direction. The continuity
equation is equivalent to the following, assuming constant ρ and µ

∇ ·−→v = 0→ ∂vz
∂z

= 0

2. Setting up the Navier-Stokes equation in the z direction simplifies to the following (recall that ρg isn’t
necessary since gravity isn’t playing a role)

∂P

∂z
= µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)]
3. Since the pressure gradient is linear,

PL − P0

µL
r =

d

dr

(
r
dvz
dr

)
4. Integrating the above equation yields

PL − P0

2µL
r2 = r

dvz
dr

+ C1

5. Integrating the above equation yields

vz =
PL − P0

4µL
r2 − C1 ln r + C2

6. Letting the constant term in front of the r2 become α for simplicity yields

vz = αr2 − C1 ln r + C2

7. At r = R1, vz = 0 since it’s a solid-liquid boundary7, so

C2 = −αR2
1 + C1 lnR1

8. At r = R2, vz = 0 since it’s a solid-liquid boundary, so

C1 =
−α

(
R2

2 −R2
1

)
ln

(
R1

R2

)
9. Substituting back into the equation for vz yields

vz = α

r2 +

(
R2

2 −R2
1

)
ln

(
R1

R2

) ln r −R2
1 −

lnR1

(
R2

2 −R2
1

)
ln

(
R1

R2

)


10. Substituting back in for α and simplifying yields

vz =
PL − P0

4µL

 ln

(
r

R2

)
ln

(
R2

R1

) (R2
2 −R2

1

)
+
(
R2

2 − r2
)

7Note that C1 6= 0 because r is never actually zero. The outer tube cannot be smaller than the inner tube, so zero volume
in the outer tube is actually r = R1
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6 Velocity Distributions with More Than One Variable

6.1 Time-Dependent Flow of Newtonian Fluids
6.1.1 Definitions

• To solve these problems, a few mathematical substitutions will be made and should be employed when
relevant to make the final solution simpler

• The kinematic viscosity is
ν =

µ

ρ

• For a wall-bounded flow, the dimensionless velocity is defined as the following where vi is the local
velocity and v0 is the friction velocity at the wall

φ =
vi
v0

6.1.2 Flow near a Wall Suddenly Set in Motion

A semi-infinite body of liquid with constant density and viscosity is bounded below by a horizontal surface
(the xz-plane). Initially, the fluid and the solid are at rest. Then at t = 0, the solid surface is set in motion
in the +x direction with velocity v0. Find vx, assuming there is no pressure gradient in the x direction and
that the flow is laminar.

1. Cartesian coordinates should be used. Also, vy = vz = 0, and vx = vx(y, t) since it will change with
height and over time

2. Using the continuity equation yields
∂vx
∂x

= 0 at constant ρ, which we already know because vx is not
a function of x

3. Using the Navier-Stokes equation in the x direction yields ρ
(
∂vx
∂t

)
= µ

(
∂2vx
∂y2

)
. This can be simpli-

fied to
∂vx
∂t

= ν
∂2vx
∂y2

4. Boundary and initial conditions must be set up:

(a) There is a solid-liquid boundary in the x direction, and the wall is specified in the problem stating
as moving at v0. Therefore, at y = 0 and t > 0, vx = v0

(b) At infinitely high up, the velocity should equal zero, so at y =∞, vx = 0 for all t > 0

(c) Finally, time is starting at t = 0, so vx = 0 at t ≤ 0 for all y

5. It is helpful to have the initial conditions cause solutions to be values of 1 or 0, so the dimensionless

velocity of φ(y, t) =
vx
v0

will be introduced such that
∂φ

∂t
= ν

∂2φ

∂y2

(a) It is now possible to say φ(y, 0) = 0, φ(0, t) = 1, and φ(∞, t) = 0

6. Since φ is dimensionless, it must be related to
y√
νt

since this (or multiplicative scale factors of it) is

the only possible dimensionless group from the given variables. Therefore, φ = φ(η) where η =
y√
4νt

.

The
√

4 term is included in the denominator for mathematical simplicity later on but is not necessary

7. With this new dimensionless quantity, the equation in Step 5 can be broken down from a PDE to an
ODE
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(a) First,
∂φ

∂t
=
∂φ

∂η

∂η

∂t
. The value for

∂η

∂t
can be found from taking the derivative with respect to t

of η defined in Step 6. This yields
∂φ

∂t
= −dφ

dη

1

2

η

t

(b) Next,
∂φ

∂y
=
∂φ

∂η

∂η

∂y
. The value for

∂η

∂y
can be found from taking the derivative with respect to y

of η defined in Step 6. This yields
∂φ

∂y
=
dφ

dη

1√
4νt

i. We want
∂2φ

∂y2
though, so perform

∂2φ

∂y2
=

∂φ

∂y

(
∂φ

∂y

)
=

(
dφ

dη
· 1√

4νt

)
·
(
dφ

dη
· 1√

4νt

)
=

d2φ

dη2

1

4νt

(c) Therefore,
d2φ

dη2
+ 2η

dφ

dη
= 0

8. New sets of boundary conditions are needed for η

(a) At η = 0, φ = 1 since this is when y = 0, and it was stated earlier that φ(0, t) = 1

(b) At η =∞, φ = 0 since this is when y =∞, and it was stated earlier that φ(∞, t) = 0

9. To solve this differential equation, introduce ψ =
dφ

dη
to make the equation

d2φ

dη2
+ 2ηψ = 0, which will

yield ψ = c1 exp
(
−η2

)
10. Integrating ψ yields φ = c1

´ η
0

exp
(
−η̄2

)
dη̄ + c2

(a) η̄ is used here since it is a dummy variable of integration and should not be confused with the
upper bound of η

11. The boundary conditions of φ = 0 and φ = 1 can be used here to find c1 and c2, which produces the
equation φ(η) = 1− erf (η)

(a) The error function is defined for an arbitrary z and ξ as erf (z) =
2√
π

´ z
0
e−ξ

2

dξ

6.2 The Potential Flow and Streamfunction
• The vorticity of a fluid is defined as

−→w = ∇×−→v

– If the vorticity of a fluid is zero, then it is said to be irrotational

• The velocity potential, φ, can be defined as the following, which satisfies irrotationality8

−→v = −∇φ

• The stream function, ψ, can be defined as the following, which satisfies continuity9

−→v = ẑ ×∇ψ

• The Laplace equation is
∇2φ = 0

– To obtain the Laplace equation from φ, substitute it into the continuity equation
– To obtain the Laplace equation from ψ, substitute it into the irrotationality condition

• A stagnation point is defined as the point where the velocity in all dimensions is zero
8A table of velocity potentials can be found in the Appendix.
9A table of stream functions can be found in the Appendix.
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6.3 Solving Flow Problems Using Streamfunctions
6.3.1 Overview

• To solve two-dimensional flow problems, the streamfunction can be used, and the equations listed in
the Appendix for the differential equations of ψ that are equivalent to the Naiver-Stokes equation
should be used

• For steady, creeping flow, the only term not equal to zero is the term associated with the kinematic
viscosity, ν

– This is also true at Re� 1

• When dealing with spherical coordinates, r and θ will still be used, but z will be used in place of φ for
the third dimension

6.3.2 Creeping Flow Around a Sphere10

Problem Statement: Obtain the velocity distributions when the fluid approaches a sphere in the positive
z direction (if z is to the right). Assume that the sphere has radius R and Re� 1.

Solution:
First, realize that this is two-dimensional flow, so a stream function should be used in place of the Navier-

Stokes equation for (relative) mathematical simplicity. The ψ equivalent for the Navier-Stokes equation in
spherical coordinates can be found in theAppendix. Since Re� 1, the stream function differential equation
becomes 0 = νE4ψ, which is simplified to 0 = E4ψ. Substituting in

(
E2
)2 into this equation yields[

∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)]2

ψ = 0 (1)

The next step is to find the boundary conditions. Note that it is best to find all boundary conditions
regardless of how many variables are actually needed. The first two boundary conditions are for the no-slip
solid-liquid boundary condition where r = R. Here,

vr = − 1

r2 sin θ

∂ψ

∂θ
= 0 (r = R) (2)

and
vθ =

1

r sin θ

∂ψ

∂r
= 0 (r = R) (3)

which are the definitions of the stream function in spherical coordinates. The velocity components at r = R
equal zero since the sphere itself is not moving. For the last boundary condition, analyze the system at a
point far away from the sphere: r →∞. To do this, first note that vθ is tangential to the streamlines around
the sphere. Due to mathematical convention (quadrants are numbered counterclockwise), this is graphically
shown as

10This problem has not been explained in full detail with regards to both concepts and the math in all the textbooks and
websites I could find, so effort has gone into a thorough explanation here.
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The diagram shown above indicates the following. The projection of the sphere (a circle) is drawn such
that it is similar to a unit circle with the angles (θ) drawn in at the appropriate quadrants. The cyan lines
represent the streamlines. v∞ represents some velocity at a point infinitely far out to the right. The yellow
vectors represent the direction of vθ, which is always tangential to the sphere and goes counterclockwise.

Note how the yellow vθ vector goes in the same direction of v∞ at θ =
3π

2
and against the direction of v∞

at θ =
π

2
. Also notice that vθ is completely perpendicular to v∞ at θ = 0, π.

With this diagram available, one should find vθ at each quadrant when r → ∞. At θ = 0, vθ = 0 since
the flow of the fluid is perpendicular to vθ and thus none of the fluid is actually flowing in the vθ direction.
At θ =

π

2
, vθ = −v∞ since the flow is parallel (but in the opposite direction) to vθ, assuming that v∞ is the

velocity of the fluid infinitely far to the right of the sphere. At θ = π, vθ = 0 since the flow is perpendicular

to vθ. At θ =
3π

2
, vθ = v∞ since the flow is parallel (and in the same direction) to vθ.

The next step is to come up with a function for vθ given the values we previously defined. The most
reasonable function that has the values of vθ shown earlier at each axis is

vθ = −v∞ sin θ (4)

This can be seen by analyzing the sine function. Sine goes from 0 to 1 to 0 to −1 in intervals of
π

2
around the

unit circle. Multiplying sine by a factor of −v∞ simply changes the magnitude of the function and ensures
the correct value at each point.

As a quick aside, one might care to know what vr is equal to at r → ∞ since we have just found vθ at
r →∞ (Eq. 4). To do this, analyze the vector triangle shown below. Note that v∞ is horizontal since it is
defined as the velocity infinitely far out to the right of the sphere, and vr is at some arbitrary angle θ since
it represents a radial value, which can be oriented at infinitely many angles. The triangle is therefore

Using trigonometry, one can state the following (note the location of the right angle and thus the hy-
potenuse):

vr = v∞ cos θ

With (Eq. 4), we can equate vθ to the corresponding definition of the stream function. Recall that vθ =
1

r sin θ

∂ψ

∂r
in spherical coordinates. This can be rearranged to dψ = −v∞r sin2 θdr by cross-multiplication
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and substitution of (Eq. 4) for vθ. This can then be integrated to yield the third and final boundary condition
of

ψ = −1

2
v∞r

2 sin2 θ (r →∞) (5)

A solution must now be postulated for ψ. To do this, look at (Eq. 5). It is clear that ψ has an angular
component that is solely a function of sin2 θ. There is also a radial component, which can be assigned some
arbitrary f(r). Therefore, a postulated solution is of the form

ψ(r, θ) = f(r) sin2 θ (6)

Now, substitute (Eq. 6) into (Eq. 1) and solve. This is a mathematically tedious process, but the bulk
of the work has been shown below. Recognize that it is probably easiest to find E2ψ and then do E2

(
E2ψ

)
instead of trying to do E4ψ all in one shot. Therefore,

E2ψ =

[
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)]
f(r) sin2 θ = 0

Multiply f(r) sin2 θ through and be careful of terms that are and are not influenced by the partial derivatives.
Also recall that differential operators are performed from right to left. This yields

E2ψ = sin2 θ
d2f(r)

dr2
+
f(r) sin θ

r2

∂

∂θ

(
1

sin θ
· 2 cos θ sin θ

)
= 0

After applying the right-most derivative,

E2ψ = sin2 θ
d2f(r)

dr2
− 2f(r) sin2 θ

r2
= 0

Factoring sin2 θ out of the equation yields

E2ψ =
d2f(r)

dr2
− 2f(r)

r2
= 0 (7)

This is close to the final solution of E4ψ = 0, but recall that this was just E2ψ that was evaluated. We must
now evaluate E2

(
E2ψ

)
, or, equivalently, E2 of (Eq. 7). This is equivalent to saying

E4ψ =

[
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)][
d2f(r)

dr2
− 2f(r)

r2

]
= 0

This simplifies to

E4ψ =

(
d2

dr2
− 2

r2

)(
d2

dr2
− 2

r2

)
f = 0 (8)

The above differential equation is referred to as an equidimensional equation, and equidimensional equa-
tions should be tested with trial solutions of the form Crn. An equidimensional equation has the same units

throughout. For instance,
d2

dr2
has units of m−2 and so does − 2

r2
. Therefore, since all terms have the same

units, this is an equidimensional equation. By substituting Crn into (Eq. 8), n may have values of -1, 1, 2,
and 4. This can be seen by the following:(

d2

dr2
− 2

r2

)(
d2

dr2
− 2

r2

)
Crn = 0

Applying the right-hand parenthesis yields(
d2

dr2
− 2

r2

)
n (n− 1)Crn−2 − 2Crn−2 = 0
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This simplifies to (
d2

dr2
− 2

r2

)
Crn−2 [n (n− 1)− 2] = 0

Applying the left-hand parentheses yields

(n− 2) (n− 3)Crn−4 [n (n− 1)− 2]− 2Crn−4 [n (n− 1)− 2]

Simplifying this yields
[(n− 2) (n− 3)− 2] [n (n− 1)− 2]Crn−4 = 0

Finally, one more algebraic simplification yields

(n− 4) (n− 2) (n− 1) (n+ 1)Crn−4 = 0

The solutions to the above equation are n = −1, 1, 2, 4. This makes f(r) the following general equation with
four terms:

f(r) = C1r
−1 + C2r + C3r

2 + C4r
4 (9)

The constant C4 must equal zero. This is because C4 is multiplied by r4, and ψ (Eq. 5/6) does not have

an r4 term in it. C3 must equal −1

2
v∞ because C3 is multiplied by an r2 term, and the equation for ψ (Eq.

5/6) has a −1

2
v∞r

2 in it. The reason that C4 = 0 and C1 and C2 do not is that we know that the highest

term in the equation for ψ is an r2 term. Any term that converges faster than the maximum order (r2) must
be zero. Therefore, the C1 term and C2 term do not have to go to zero, but the C4 term does. This makes
the equation for ψ the following by plugging (Eq. 9) into (Eq. 6):

ψ(r, θ) =

(
C1r

−1 + C2r −
1

2
v∞r

2

)
sin2 θ (10)

Using the definition of vr in relation to the stream function, one can rewrite this equation as the following

by plugging the equation for ψ (Eq. 10) into
∂ψ

∂θ
in the equation for vr:

vr = − 1

r2 sin θ

∂ψ

∂θ
=

(
v∞ − 2

C2

r
− 2

C1

r3

)
cos θ (11)

Similarly for vθ,

vθ =
1

r sin θ

∂ψ

∂r
=

(
−v∞ +

C2

r
− C1

r3

)
sin θ (12)

By setting vr = 0 and vθ = 0 at the r = R no-slip boundary conditions and solving for C1 and C2, we

get a system of 2 linear equations with C1 = −1

4
v∞R

3 and C2 =
3

4
v∞R. One somewhat easy way to do

this is to add (Eq. 11) and (Eq. 12), which cancels a lot of terms in the system of equations. However, any
method to solve the system is sufficient. With these constants, one can rewrite the equation for ψ (Eq. 10)
as

ψ (r, θ) =

(
−1

4
v∞

R3

r
+

3

2
v∞Rr −

1

2
v∞r

2

)
sin2 θ (13)

Therefore, rewriting (Eq. 11) and (Eq. 12) with the values for the constants substituted in yields the
following

vr = v∞

(
1− 3

2

(
R

r

)
+

1

2

(
R

r

)3
)

cos θ

vθ = −v∞

(
1− 3

4

(
R

r

)
− 1

4

(
R

r

)3
)

sin θ
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6.4 Solving Flow Problems with Potential Flow
6.4.1 Overview

• To solve two-dimensional problems with fluids that have very low viscosities, are irrotational, are
incompressible, and are at steady-state, the potential flow method can be used

6.4.2 Steady Potential Flow Around a Stationary Sphere

Problem Statement: Consider the flow of an incompressible, inviscid fluid in irrotational flow around a
sphere. Solve for the velocity components.

Solution:
This problem is best done using spherical coordinates. The boundary conditions should then be found.

There is a no-slip boundary condition at r = R. Here,

vr = −∂φ
∂r

= 0 (r = R) (14)

and
vθ = −1

r

∂φ

∂θ
= 0 (r = R) (15)

Now, infinitely far away should be analyzed. At this point,

vr = v∞ cos θ (r →∞) (16)

and
vθ = −v∞ sin θ (17)

For explanation of how to obtain (Eq. 16/17), see the previous example problem with the stream function.
Now, analyze φ in order to come up with a trial expression. This is done by substituting (Eq. 16) or

(Eq. 17) into (Eq. 14) or (Eq. 15) and solving for φ via integration. Whether you choose to substitute vr
or vθ, the reasonable trial solution is of the form

φ(r, θ) = f(r) cos θ (18)

Next, substitute (Eq. 18) into the Laplace equation such that

∇2f(r) cos θ = 0

This expression becomes the following in spherical coordinates

1

r2

∂

∂r

(
r2 ∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
= 0

Doing some of the derivatives yields

1

r2

d

dr

(
r2 df(r)

dr
cos θ

)
+

1

r2 sin θ

∂

∂θ

(
−f(r) sin2 θ

)
= 0

Performing the right-most derivative and factoring out the cosine yields the following. Note that the left-most
derivative is retained since doing a product rule is just extra work.

1

r2

d

dr

(
r2 df(r)

dr

)
− 2f(r)

r2
= 0 (19)

Note that (Eq. 19) is an equidimensional equation (see previous example problem with the stream
function for more detail). Therefore, a test solution of Crn should be inputted for f(r) in (Eq. 19). Doing
this yields

1

r2

d

dr

(
r2 d (Crn)

dr

)
− 2 (Crn)

r2
= 0
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This should be some fairly simple calculus, which will result in the algebraic expression

(n+ 2) (n− 1) = 0

This has roots of n = −2 and n = 1, so the trial expression f(r) can be written as

f(r) = C1r + C2r
−2

Substituting f(r) into (Eq. 18) yields

φ(r, θ) =
(
C1r + C2r

−2
)

cos θ (20)

Apply the boundary conditions to solve for the constants. For instance, at r = R, we know that

vr = −∂φ
∂r

= 0, so substituting (Eq. 20) into this expression yields

C1 −
2C2

r3
= 0

Evaluating this at r = R and rearranging yields

C2 =
1

2
C1R

3 (21)

At r →∞, we know that vr = v∞ cos θ = −∂φ
∂r

, so substituting (Eq. 20) into this expression yields

−
(
C1 − 2C2r

−3
)

cos θ = v∞ cos θ

Evaluating this at r →∞ and rearranging yields

C1 = −v∞

Plugging the above expression into (Eq. 21) will yield

C2 = −1

2
v∞R

2

Plugging the newly found expressions for C1 and C2 into f(r) yields

f(r) = −v∞
(

1 +
R2

2r2

)
and substituting this f(r) into (Eq. 20) yields

φ(r, θ) = −v∞
(

1 +
R2

2r2

)
cos θ (22)

Now that an expression for φ is found, we can find the velocity components using −→v = −∇φ (or the
equivalent definitions in the Appendix). For instance, we know that

vr = −∂φ
∂r
, vθ = −1

r

∂φ

∂θ

Therefore, plugging (Eq. 22) into the above expressions will yield vr and vθ after simplification. They will
come to

vr = v∞

(
1−

(
R

r

)3
)

cos θ

and

vθ = −v∞

(
1 +

1

2

(
R

r

)3
)

sin θ
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6.5 Boundary Layer Theory
6.5.1 Derivation of Prandtl Boundary Layer Conditions

• Boundary layer theory involves the analysis of a very thin region (the boundary layer), which, due to
its thinness, can be modeled in Cartesian coordinates despite any apparent curvature. For consistency,
x will indicate downstream and y will indicate a direction perpendicular to a solid surface

• To be clear, a boundary layer is the following. Consider a solid object in a fluid. The area we are
investigating is near this solid - not on the edge of the solid yet not very far away from the solid.
Therefore, we will consider a hypothetical thin boundary layer that surrounds the solid

• Let v∞ be the approach velocity on the surface (arbitrary dimension), I0 be the length of the object,
and δ0 be the thickness of the thin boundary layer

– Since we define this as a very thin boundary layer, we know that δ0 � I0

• The scenario described above is depicted below for reference. The dashed line is the boundary layer
(graphic from BSL):

• The continuity equation for this system is
∂vx
∂x

+
∂vy
∂y

= 0, and the N-S equation in the x and y

directions can be written as(
vx
∂vx
∂x

+ vy
∂vx
∂y

)
= −1

ρ

∂P

∂x
+ ν

(
∂2vx
∂x2

+
∂2vx
∂y2

)
(23)

and (
vx
∂vy
∂x

+ vy
∂vy
∂y

)
= −1

ρ

∂P

∂y
+ ν

(
∂2vy
∂x2

+
∂2vy
∂y2

)
(24)

• To solve a boundary layer problem, approximations need to be made that will simplify the N-S equations

• We know that vx = 0 at the solid-liquid boundary (no-slip condition). Therefore, vx varies from 0 to
v∞ from the solid’s edge to the edge of the hypothetical boundary layer. Also, δ0 is the thickness,
which is in the y direction. As such11,

∂vx
∂y

= O
(
v∞
δ0

)
(25)

• In the length direction, I0, the fluid can only slow down once it hits the solid. Therefore, vx has a
maximum of v∞ such that

∂vx
∂x

= O
(
v∞
I0

)
(26)

11The O operator indicates “order of magnitude of.”
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– Integrating (Eq. 26) yields

vx = O

(
v∞
I0

ˆ I0

0

dx

)
= O (v∞)

• The continuity equation can be performed to find out that

∂vy
∂y

= O
(
v∞
I0

)
(27)

– Integrating (Eq. 27) yields

vy = O

(
v∞
I0

ˆ δ0

0

dy

)
= O

(
v∞δ0
I0

)
∗ This means that vy � vx since we stated earlier that δ0 is a very small quantity

• Looking at the N-S equations listed earlier, the terms can be replaced with their order of magnitude
equivalents. First, the x direction N-S equation will be analyzed (Eq. 23):

– First, the following relationship holds due to (Eq. 26) and the fact that vx = O (v∞)

vx
∂vx
∂x

= O
(
v2
∞
I0

)
(28)

– Second, the following relationship holds due to (Eq. 25) and the fact that vy = O
(
v∞δ0
I0

)
found

earlier

vy
∂vx
∂y

= O
(
v2
∞
I0

)
(29)

– Next, the following relationship holds due to (Eq. 26):

∂2vx
∂x2

= O
(
v∞
I2
0

)
(30)

∗ Note that the it is not v2
∞ in the numerator because a second-derivative indicates two instances

of dx and not two instances of vx
– This also means that the following relationship holds due to (Eq. 25):

∂2vx
∂y2

= O
(
v∞
δ2
0

)
(31)

– Additionally,
∂2vx
∂x2

� ∂2vx
∂y2

(32)

∗ This is because we already stated I0 � δ0, and δ0 is in the denominator of (Eq. 31) while I0
is in the denominator of (Eq. 30)

• Now all portions of the x direction N-S equation have been replaced piece-by-piece

• According to boundary layer theory, the left velocity components of N-S equations should have the
same order of magnitude as the velocity components on the right side of the N-S equations at the
boundary layer
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– Therefore, rewriting (Eq. 23) with the previously defined order of magnitude analogues and the
fact that vx � vy as well as the relationship in (Eq. 32) yields

v2
∞
I0

= O
(
ν
v∞
δ2
0

)
– Rearranging the above equation and substituting in the Reynolds number yields the more fre-

quently used relationship of
δ0
I0

= O
(

1√
Re

)
• All information from the x direction N-S equation has now been extracted. To be completely math-
ematically rigorous, the y direction N-S equation should be analyzed, but this will simply yield that
the N-S equation in the y direction is much less significant than the x direction N-S equation (see Eq.
4.4-9 in Bird for a mathematical justification). This does not really come as a surprise since we stated

vy � vx earlier. This also means that
∂P

∂y
� ∂P

∂x
such that the modified pressure is only a function

of x.

• Collectively, this information leads us to the Prandtl boundary layer equations, which are

∂vx
∂x

+
∂vy
∂y

= 0 (33)

and

vx
∂vx
∂x

+ vy
∂vx
∂y

= −1

ρ

dP

dx
+ ν

∂2vx
∂y2

(34)

– The first Prandtl boundary layer equation is simply the continuity equation stated at the beginning
of this section, and the second equation is the simplified N-S equation in the x direction taking
into account (Eq. 32)

6.5.2 Derivation of the von Karman Momentum Balance12

• With these assumptions in place, the Prandtl boundary layer equations can be solved for and will yield
the Karman momentum balance

• Taking the derivative with respect to x of the Bernoulli Equation at the edge of the boundary will
yield a useful relationship. Note that vx(x, y)→ ve(x) at the outer edge of the boundary layer

d

dx

[
P(x)

ρ
+
ve(x)2

2

]
=

d

dx
[constant]

• This simplifies to the following (note the use of product rule)

1

ρ

dP(x)

dx
+

1

2

[
ve(x)

dve(x)

dx
+
dve(x)

dx
ve(x)

]
= 0

• Further simplification yields

ve(x)
dve(x)

dx
= −1

ρ

dP(x)

dx
(35)

• Now, (Eq. 33) will be analyzed. It can integrated and rearranged to yield13

vy = −
ˆ y

0

∂vx
∂x

dȳ (36)

12Not required for ChBE 21 at Tufts University.
13The “function of x” (e.g. ve(x)) will be dropped for simplicity.

28



• Plugging (Eq. 35) and (Eq. 36) into (Eq. 34) yields

vx
∂vx
∂x
−
(ˆ y

0

∂vx
∂x

dȳ

)
∂vx
∂y

= ve
dve
dx

+ ν
∂2vx
∂y2

(37)

• Integrating (E. 37) from y = 0 to y =∞ yieldsˆ ∞
0

[
vx
∂vx
∂x
− ∂vx

∂y

(ˆ y

0

∂vx
∂x

dȳ

)
− ve

dve
dx

]
dy =

ˆ ∞
0

[
ν
∂2vx
∂y2

]
dy (38)

– The RHS of the above equation is ˆ ∞
0

ν
∂2vx
∂y2

dy = ν
∂vx
∂y

∣∣∣∣∞
0

∗ Evaluating at y = ∞ yields zero since the top of the boundary layer should have inviscid
outer flow (viscosity only matters in a region close to the boundary layer). This yields

RHS = −µ
ρ

∂vx
∂y

∣∣∣∣
y=0

(39)

– The second term on the LHS can now be evaluated. It can be rewritten as

Second Term on LHS = −
ˆ ∞

0

∂vx
∂y

[ˆ y

0

∂vx
∂x

dȳ

]
dy

∗ Integration by parts yields

Second Term on LHS = −
[
vx|∞0

ˆ ∞
0

∂vx
∂x

dy −
ˆ ∞

0

vx
∂vx
∂x

dy

]
∗ Recall that vx(x, y) and vx(x,∞)→ ve(x) such that the above equation can be rewritten as

Second Term on LHS = −
ˆ ∞

0

ve
∂vx
∂x

dy +

ˆ ∞
0

vx
∂vx
∂x

dy (40)

– Substituting (Eq. 39) and (Eq. 40) into (Eq. 38) yields

2

ˆ ∞
0

vx
∂vx
∂x

dy −
ˆ ∞

0

ve
∂vx
∂x

dy −
ˆ ∞

0

ve
dve
dx

dy = −µ
ρ

∂vx
∂y

∣∣∣∣
y=0

(41)

– After some manipulation and multiplication by ρ, the above equation becomes the von Karman
momentum balance of

µ
∂vx
∂y

∣∣∣∣
y=0

=
d

dx

ˆ ∞
0

ρvx (ve − vx) dy +
dve
dx

ˆ ∞
0

ρ (ve − vx) dy

7 Flow in Chemical Engineering Equipment

7.1 Laminar Flow
• For a horizontal pipe of length L and radius R, the velocity profile can be written as the following at
any radial point r

v =
−∆P

4µL

(
r2 −R2

)
• The total flow rate can be written as

Q =

ˆ 2π

0

ˆ R

0

v rdrdθ =
−∆PπR4

8µL

• The mean velocity is given as

〈v〉 =
Q

πR2
=
−R2∆P

8µL

and the maximum velocity is simply twice the mean velocity
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7.2 Friction Factors for Flow in Tubes
• The Fanning friction factor is defined as the following with the usual definitions and τw as the wall
shear stress

fF =
2τw
ρ〈v〉2

=
−D∆P

2Lρ〈v〉2

• For Laminar flow,

fF =
16

Re

7.3 Friction Factors for Flow Around Submerged Objects
• The coefficient of drag is given as

CD =
FD/AP
ρv2
∞

– AP is the project area and is
πD2

4
for flow around a submerged sphere and FD is the drag force

and is given as FD =
P

v

• The settling of a spherical particle under the influence of gravity is given as

πD3

6
(ρs − ρf ) g − FD =

πD3ρs
6

dv

dt

• At terminal velocity or any other steady-state condition,
dv

dt
= 0. Therefore, solving for FD and

plugging into the definition of CD yields

CD =
4gD (ρs − ρf )

3v2
∞ρf

– All subscripts of s indicate the spherical object and f for the fluid. For terminal velocity, v∞ = vt

• The above equation for CD can be rewritten as

CDRe2 =
4gρfD

3

3µ2
(ρs − ρf )

or as
CD
Re

=
4gµ (ρs − ρf )

3ρ2
fv

3
∞

8 Thermal Conductivity and the Mechanisms of Energy Transport

8.1 Fourier’s Law of Heat Conduction
• The heat flux (−→q ) is defined as (Fourier’s Law of Cooling)

−→q = −k∇T

• The heat flux is related to the heat flow (Q) by

Q = −→q A = −Ak∇T
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• The thermal diffusivity is defined as the following where Ĉp is heat capacity at constant pressure with
per-mass units,

α =
k

ρĈp

– The units of α are length-squared per unit time

• The Prandtl number (unitless) is defined as

Pr =
ν

α
=
Ĉpµ

k

8.2 The Microscopic Energy Balance
8.2.1 Equation

• The microscopic energy balance states that

ρĈp

[
∂T

∂t
+−→v · ∇T

]
= −∇ ·−→q + S

• Using Fourier’s Law of cooling yields the equivalent14

ρĈp

[
∂T

∂t
+−→v · ∇T

]
= ∇ (k∇T ) + S

– Note that ∇ (k∇T ) = k∇2T when k is constant

• The
∂T

∂t
is the accumulation term, the (−→v · ∇)T term is convective, the ∇ (k∇T ) is the conductive

term, and S is the source term

• Dividing by ρĈP and assuming k is constant yields(
∂T

∂t
+ (−→v · ∇)T

)
= α∇2T +

S

ρĈp

where
α ≡ k

ρĈP

• Recall the following thermodynamic definition as well:

Ĉp =

(
∂H

∂T

)
P

8.2.2 Boundary Conditions

• The temperature may be specified at a surface

• The heat flux normal to a surface may be given (this is the same as saying the normal component of
the temperature gradient)

• There must be continuity of temperature and heat flux normal to the surface at the interfaces

• At a solid-liquid interface, q = h (T0 − Tb) where Tb is the bulk temperature and T0 is the solid surface
temperature

14Since boundary conditions are more frequently based on temperature quantities, this form of the equation is typically more
useful.
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8.3 Conduction through a Block
Prompt: There is a rectangular prism with heat flow solely in the +x direction. The left face of the object
is at a temperature T1, and the right face of the object is at a temperature T2. The length of the box is
x = B. Assume that k = a+ bT , where a and b are constants. Solve for the heat flux through the object.

Solution:

1. The Cartesian coordinate system should be used. Also, there is only conduction, and it is in the x
direction such that T (x)

2. Using the microscopic energy balance, realizing it is steady state so
∂T

∂t
= 0, that −→v = 0, and that

S = 0 yields
0 = ∇ (k∇T )

3. Substituting in for k and rewriting the equivalents for ∇ yields

0 =
d

dx

(
(a+ bT )

dT

dx

)
4. Integrating once yields

C1 = (a+ bT )
dT

dx

5. Integrating again yields

C1x+ C2 = aT +
bT 2

2

6. At the interfaces, there must be continuity of temperature, so at x = 0, T = T1, and at x = B, T = T2

C2 = aT1 +
bT 2

1

2

C1 =
a (T2 − T1)

B
+
b
(
T 2

2 − T 2
1

)
2B

7. From this, the temperature profile can be fully described. However, since the heat flux is desired,

Fourier’s Law will be used. Note that step 4 indicated that C1 = k
dT

dx
. Therefore,

qx = −kdT
dx

= −C1 = −

[
a (T2 − T1)

B
+
b
(
T 2

2 − T 2
1

)
2B

]

8.4 Shell Energy Balance
• As with fluids, the shell balance can be used in place of the microscopic balance for heat flow. The
equation is:

Convection In - Convection Out + Conduction In - Conduction Out + Work On System - Work By System
+ Rate of Energy Production = 0

• Conduction is given as Aq where A is the projected area (analogous to the stress term in the shell
momentum balance)

• The rate of energy production is given as SV where S is the rate of heat production per unit volume
and V is volume
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8.5 Heat Conduction with an Electrical Heat Source
8.5.1 Shell Energy Balance

Problem: Find the temperature profile of a cylindrical wire with radius R, length L, an outside temperature
of T0, and a constant rate of heat production per unit volume of Se.

Solution:

1. This problem is best done with cylindrical coordinates. Temperature is only a function of r, and the
shell will become infinitesimally small in the radial direction

2. Setting up the shell energy balance with only conduction and a source yields

Aq
∣∣
in
−Aq

∣∣
out

+ V Se = 0

3. The conduction areas are the projection, which is the circumference times the length. The volume is
simply the volume of the cylindrical shell

(2πrLqr)
∣∣
r
− (2πrLqr)

∣∣
r+∆r

+ 2πrL∆rSe = 0

4. Factoring out constants yields

2πL
[
(rqr)

∣∣
r
− (rqr)

∣∣
r+∆r

]
+ 2πrL∆rSe = 0

5. Rearranging terms to make use of the definition of the derivative yields

2πL
[
(rqr)

∣∣
r+∆r

− (rqr)
∣∣
r

]
− 2πrL∆rSe = 0

6. Dividing by 2πL∆r and using the definition of the derivative yields

d (rqr)

dr
= rSe

7. Integrating once yields

qr =
rSe
2

+
C1

r

8. There must be a value at r = 0, but at r = 0, the C1 term blows up to infinity. Since this is non-physical,
C1 = 0 and the expression becomes

qr =
rSe
2

9. Fourier’s Law can now be used to introduce temperature such that

−kdT
dr

=
rSe
2

10. Integrating once yields

T = −r
2Se
4k

+ C2

11. Since temperature must be continuous at the interface, at r = R, T = T0. Therefore,

C2 = T0 +
R2Se

4k

12. Rewriting the expression for temperature and simplifying yields

T − T0 =
SeR

2

4k

[
1−

( r
R

)2
]
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8.5.2 Microscopic Energy Balance

Problem: Repeat the previous example using the microscopic energy balance.
Solution:

1. Cylindrical coordinates are best used for this problem. Temperature is only a function of r, the system
is at steady-state, the system is not moving, and k is assumed constant such that the microscopic
energy balance becomes

0 = k∇2T + Se

2. Substituting in for ∇2 in cylindrical coordinates yields

k
1

r

d

dr

(
r
dT

dr

)
= −Se

3. Integrating once yields

r
dT

dr
= −Ser

2

2k
+ C1

4. Integrating a second time yields

T = −Ser
2

4k
+ C1 ln |r|+ C2

5. Since the C1 term becomes unphysical at r = 0, it must be true that C1 = 0 such that

T = −Ser
2

4k
+ C2

6. The temperature must be continuous at the interface, so at r = R, T = T0 such that

C2 = T0 +
SeR

2

4k

7. This makes the final expression for the temperature

T − T0 =
SR2

4k

[
1−

( r
R

)2
]

8. To get the heat flux, use Fourier’s Law at Step 3 such that

−qrr
k

= −Ser
2

2k
+ C1

(a) This is because qr = −kdT
dr

9. Since C1 was found to be zero in Step 5,

−qrr
k

= −Ser
2

2k

10. Simplifying yields

qr =
Ser

2
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8.6 Heat Conduction with a Nuclear Heat Source
Problem: Consider a double-layer spherical nuclear fuel element. There is a core spherical nuclear material
surrounded by a spherical coating. The radius of the nuclear material is given as Rf , and the radius from the
center to the outer edge of the coating is given as Rc. Find the heat flux and temperature profile, assuming
that the source energy is not constant and is given as

Sn = Sn0

[
1 + b

(
r

Rf

)2
]

where Sn0 and b are constants. The outer temperature of the system is also at T0.
Solution:

1. Spherical coordinates are best used here. The temperature and heat flux are only functions of r, and
the spherical shell will have a thickness that approaches zero in the radial direction. The only terms
are conduction and source for the heat flux from the nuclear fission. However, there is also another
expression for the heat flux through the coating part. The two expressions will be identical, but the
heat flux through the coating will not have a source.

2. Writing the shell energy balance for the fission heat flux yields with A = 4πr2 (the surface area of a
sphere) and V = 4πr2∆r,

4π
[(
r2qfr

) ∣∣
r
−
(
r2qfr

) ∣∣
r+∆r

]
+ 4πr2∆rSn = 0

3. Dividing by 4π∆r and rearranging the terms to make use of the definition of the derivative yields

d
(
r2qfr

)
dr

= r2Sn

(a) Since Sn is a function of r, the expression will need to be substituted in for proper integration.
This yields

d
(
r2qfr

)
dr

= r2Sn0

[
1 + b

(
r

Rf

)2
]

4. As stated before, the heat flux through the coating will be identical but without a source, so it is

d
(
r2qcr

)
dr

= 0

5. Integrating the equations in Step 3(a) and Step 4 independently yields

qfr = Sn0

(
r

3
+

br3

5R2
f

)
+
Cf1
r2

qcr =
Cc1
r2

6. The value of r = 0 is only applicable for the inner fissionable material (since the radial values of the
coating are r = Rf to r = Rc instead of r = 0 to r = Rf ). It is clear that r = 0, the Cf1 terms becomes
unphysical, so Cf1 = 0 and thus

qfr = Sn0

(
r

3
+

br3

5R2
f

)

7. At the interfaces, the heat flux must be continuous, so at r = Rf , qcr = qfr such that

Cc1 = qfrR
2
f = Sn0

(
R3
f

3
+
bR3

f

5

)
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8. Substituting the expression for Cc1 yields

qcr =
R3
f

r2
Sn0

(
1

3
+
b

5

)
9. Now that both components of the heat flux are obtained, the temperatures can be found by using

Fourier’s Law:

−kf dT
f

dr
= Sn0

(
r

3
+

br3

5R2
f

)
and

−kc dT
c

dr
=
R3
f

r2
Sn0

(
1

3
+
b

5

)
10. Integrating the above equations yields

T f = −Sn0

kf

(
r2

6
+

br4

20R2
f

)
+ Cf2

and

T c =
Sn0

kc

(
1

3
+
b

5

)
R3
f

r
+ Cc2

11. At the interfaces, the temperature must be continuous, so at r = Rf , T f = T c, and at r = Rc, T c = T 0.
Therefore, applying these boundary conditions and solving for the constants yields

T f =
Sn0R

2
f

6kf

[[
1−

(
r

Rf

)2
]

+
3

10
b

[
1−

(
r

Rf

)4
]]

+
Sn0R

2
f

3kc

(
1 +

3b

5

)(
1− Rf

Rc

)
+ T0

and

T c =
Sn0R

2
f

3kc

(
1 +

3b

5

)(
Rf
r
− Rf
Rc

)
+ T0

8.7 Thermal Resistance
8.7.1 Rectangular Rth

• It turns out that many physical phenomena can be described by Flow Rate = Driving Force/Resistance

• Consider heat flowing in the x direction through a rectangular object with length B and area A. If
the temperature change is linear,

qx = k
∆T

B
∴ Q = kA

T1 − T2

B

• Since the change in temperature is the driving force, and Q is the flow rate, the thermal resistance in
a rectangular system can be defined as

Rth =
B

kA

8.7.2 Defining a General Q Using Rth

• Using the above expression for Rth, Q can be rewritten as

Q =
T1 − T2

Rth
=

∆T

Rth

– The above expression holds true for systems in any coordinate system as long as Rth is appropri-
ately redefined

– Here, ∆T is not final minus initial. It is always a positive quantity, and it it is frequently Thot−Tcold
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8.7.3 Cylindrical Shell Rth

Problem: Consider a cylindrical tube (with a hollowed out center) with inner radius R1 and outer radius
R2. The temperature of the innermost surface is T1 and outermost surface is T2. Assume heat flows radially
and the cylinder has length L. Derive Rth.

Solution:

1. Using cylindrical coordinates, the microscopic energy balance can be rewritten as

1

r

d

dr

(
kr
dT

dr

)
= 0

2. Integrating once yields
dT

dr
=
C1

r

3. Integrating again yields
T = C1 ln r + C2

4. The temperatures were defined at the interfaces, so at r = R1, T = T1, and at r = R2, T = T2 such
that

T1 = C1 lnR1 + C2

and
T2 = C1 lnR2 + C2

5. Solving for C1 yields

C1 = − T1 − T2

ln (R2/R1)

(a) Note that C2 is not needed (but can easily be solved for) since we are looking for heat flux, and
that simply requires C1 in Step 2 to be found

6. Substituting C1 in Step 2 and using Fourier’s Law yields

qr =
k (T1 − T2)

r ln (R2/R1)

7. The heat flow can then be found as

Q = qrAr =
2πLk (T1 − T2)

ln (R2/R1)

8. Since the temperature is the driving force, the thermal resistance can be defined as

Rth =
ln (R2/R1)

2πkL

8.7.4 Spherical Shell Rth

• For radial conduction in a spherical system, a similar procedure can be used to find that

Rth =
R2 −R1

4πkR1R2
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8.8 Heat Conduction through Composite Walls
8.8.1 Series and Parallel Resistances

• The total resistance of resistances in series is

Rtot =
∑
i

Ri

• The total resistance of resistances in parallel is

Rtot =

(∑
i

R−1
i

)−1

8.8.2 Series Rectangular Composite

Problem: Consider a rectangular wall composed of three distinct materials. The left third (x = x0 to x = x1)
is some arbitrary material 1, the middle (x = x1 to x = x2) is some arbitrary material 2, and the right third
(x = x2 to x = x3) is some arbitrary material 3. Each has a unique k value. Find the effective thermal
conductivity if b1 = x1 − x0, b2 = x2 − x1, and b3 = x3 − x2.

1. The heat flux must be continuous. For instance, at x = x0, qx = q0. At the x1 interface, q0 = q1. At
the x2 interface, q1 = q2. At the x3 interface, q2 = q3. Therefore, qx = q1 = q2 = q3 = q0. The heat
flux is a constant at each interface.

2. Since this is true, at region 1, 2, and 3,

q0 = −k01
dT

dx

q0 = −k12
dT

dx

q0 = −k23
dT

dx

3. Integrating yields at region 1, 2, and 3,

T = − q0

k01
x+ C1

T = − q0

k12
x+ C2

T = − q0

k23
x+ C3

4. At x = x0, T = T0, and at x = x1, T = T1 such that

T0 − T1 =
q0

k01
(x1 − x0)

5. Repeating this for the other regions yields

T1 − T2 =
q0

k12
(x2 − x1)

T2 − T3 =
q0

k23
(x3 − x2)

6. Adding the temperature from each region yields

T0 − T3 = q0

(
b1
k01

+
b2
k12

+
b3
k23

)
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7. The heat flow can then be written as

Q = q0A =
T0 − T3(

b1
Ak01

+
b2
Ak12

+
b3
Ak23

) =
∆T

Reff

where
Reff =

b1
k01A

+
b2
k12A

+
b3
k23A

= R1 +R2 +R3

8. It is clear that the above system can be modeled with a circuit analog where there are three resistances
in series!

9. Bringing the area term to the numerator,

Q =
A (T0 − T3)

b1
k01

+
b2
k12

+
b3
k23

10. If we introduce keff as the effective heat transfer coefficient,

Q =
keffA (T0 − T3)

b1 + b2 + b3

11. Therefore,

keff =

[
1

b1 + b2 + b3

(
b1
k01

+
b2
k12

+
b3
k23

)]−1

• Note that the previous procedure was mostly a formalism. If you recognize that the composite can be
modeled as series resistances, one can jump directly to that step using the previously defined thermal
resistances for that coordinate system

8.8.3 Cylindrical Composite

Problem: There are three cylindrical shells surrounding one another. The inner temperature of the first
surface from the center is T1 and is at r1. The inner temperature of the second surface (outer temperature
of the first surface) is T2 and is at r2. The inner temperature of the third surface (outer temperature of the
second surface) is T3 and is at r3. The cylinder has a length L. The heat flux is solely radial. Model the
effective thermal resistance. A rough sketch is shown below to help visualize the scenario:

+

Solution: Using the definition of Rth from earlier in cylindrical coordinates and realizing that this is a
system in series,

Reff = R1 +R2 +R3 =
ln (r1/r0)

2πk01L
+

ln (r2/r1)

2πk12L
+

ln (r3/r2)

2πk23L
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8.8.4 Parallel Rectangular Composite

Problem: Consider the following system. Find Reff in terms of keff .

Solution:

• Since there are now three components in parallel,

Reff =
(
R−1

1 +R−1
2 +R−1

3

)−1
= b

(
1

k01A1
+

1

k12A2
+

1

k23A3

)
• Introducing a keff yields

Reff =
b

keff (A1 +A2 +A3)

• To figure out what keff is equal to, substitute back in for Reff :

keff (A1 +A2 +A3)

b
=
k01A1

b
+
k2A2

b
+
k3A3

b

• Therefore,

keff =
(k01A1 + k12A2 + k23A3)

A1 +A2 +A3

8.8.5 Series and Parallel Cylindrical Composite

Problem: Consider the following system. Find Reff in terms of keff . The system below is a rectangular
cross-section of a cylinder. Therefore, r0 is the innermost radius, and r3 is the outermost radius.

Solution:

• Elements 1 and 2 are in series. Elements 3 and 4 are in parallel. The equivalent of elements 3 and 4
are in series with elements 1 and 2. Therefore,

Req−34 =
(
R−1

3 +R−1
4

)−1

and
Reff = R1 +R2 +Req−34
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• Using the cylindrical definitions defined earlier,

Reff =
ln (r1/r0)

2πk1L3
+

ln (r2/r1)

2πk2L3
+

ln (r3/r2)

2πkeq−34L3

• Introducing keff yields

Reff =
ln (r3/r0)

2πkeffL3

• Using the general definition of Q =
∆T

Reff
,

Q =
∆T(

ln (r3/r0)

2πkeffL3

)
• To find out what keff is in this equation, substitute back in for Reff

ln (r3/r0)

2πkeffL3
=

ln (r3/r2)

2πk1L3
+

ln (r2/r1)

2πk2L3
+

ln (r1/r0)

2πkeq−34L3

• This simplifies to

keff =
ln (r3/r0)

ln (r3/r2)

k1
+

ln (r2/r1)

k2
+

ln (r1/r0)

keq−34

• However, we have not yet defined keq−34 yet. To find keq−34, substitute back in for Req−34. As such,

2πkeq−34L3

ln (r1/r0)
=

2πk3L1

ln (r1/r0)
+

2πk4L2

ln (r1/r0)

keq−34 =
k3L1 + k4L2

L1 + L2
=
k3L1 + k4L2

L3

8.9 Newton’s Law of Cooling
8.9.1 Definitions

• Newton’s law of cooling states the following where Ts is solid surface temperature and T∞ is the bulk
liquid temperature

q = h (Ts − T∞)

– The constant h is the heat transfer coefficient

• The biot number (dimensionless) is defined as

Bi =
bh

k
=

heat transfer by fluid
heat transfer by solid

8.9.2 Liquid Bound on One Side

Problem: Consider a bulk liquid at temperature T∞ bounded on one side by a solid wall at temperature Ts.
Derive Rth.

1. We know that Q =
∆T

Rth

2. Using Newton’s law of cooling Q = qA = h (Ts − T∞)A

3. Therefore, Rth =
1

Ah
to make Q =

∆T

Rth
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8.9.3 Solid Bound by Two Different Temperature Fluids - Rectangular

Problem: Solve the Series Rectangular Composite problem except for now there is a fluid bounding both
sides of the rectangular composite (depicted below):

1. Using the same procedure as in the Series Rectangular Composite question, the following is true

T0 − T1 =
q0

k01
b1

T1 − T2 =
q0

k12
b2

T2 − T3 =
q0

k23
b3

2. Now, we must consider the heat transfer at the solid-liquid interfaces as well. As such,

q0 = ha (Ta − T0)

q0 = hb (T3 − Tb)

3. The sum of these equations yields

Ta − Tb = q0

(
b1
k01

+
b2
k12

+
b3
k23

+
1

ha
+

1

hb

)
4. Therefore,

Q = q0A =
Ta − Tb

1

A

(
b1
k01

+
b2
k12

+
b3
k23

+
1

ha
+

1

hb

)

5. Since Q =
∆T

Reff
, for the solid region, Rth =

b

kA
as before, and the fluid region is

1

hA

8.9.4 General Equation

• To generalize the previous examples, a solid rectangular system bounded by fluid can be described by

Q =
Thot − Tcold

1

A

(
1

h0
+
∑n
j=1

xj − xj−1

kj−1,j
+

1

hn

)
• A solid cylindrical system bounded by fluid can be described by

Q =
Thot − Tcold

1

2πL

(
1

r0h0
+
∑n
j=1

ln (rj/rj−1)

kj−1,j
+

1

rnhn

)
• If there is no surrounding fluid to be considered, the terms with h can be dropped
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9 The Equations of Change for Nonisothermal Systems

9.1 The Energy Equation
• The general form of the energy equation states that

∂

∂t

(
1

2
ρv2 + ρÛ

)
= −∇

[(
1

2
ρv2 + ρÛ

)
−→v
]
−∇ ·−→q −∇ ·P−→v −∇ (τ : −→v ) + ρ (−→v · −→g )

• The equation of change of temperature states that

ρĈp

(
∂T

∂t
+−→v · ∇T

)
= −∇ ·−→q −

(
∂ ln ρ

∂ lnT

)
p

(
∂T

∂t
+−→v · ∇T

)
− τ : ∇−→v

• The following relationships also hold

Ĥ = Û +
P

ρ

dĤ = ĈpdT

10 Appendix

10.1 Newton’s Law of Viscosity
10.1.1 Cartesian

τxy = τyx = −µ
[
∂vy
∂x

+
∂vx
∂y

]
τyz = τzy = −µ

[
∂vz
∂y

+
∂vy
∂z

]
τzx = τxz = −µ

[
∂vx
∂z

+
∂vz
∂x

]
10.1.2 Cylindrical

τrθ = τθr = −µ
[
r
∂

∂r

(vθ
r

)
+

1

r

∂vr
∂θ

]
τθz = τzθ = −µ

[
1

r

∂vz
∂θ

+
∂vθ
∂z

]
τzr = τrz = −µ

[
∂vr
∂z

+
∂vz
∂r

]
10.1.3 Spherical

τrθ = τθr = −µ
[
r
∂

∂r

(vθ
r

)
+

1

r

∂vr
∂θ

]
τθφ = τφθ = −µ

[
sin θ

r

∂

∂θ

( vφ
sin θ

)
+

1

r sin θ

∂vθ
∂φ

]
τφr = τrφ = −µ

[
1

r sin θ

∂vr
∂φ

+ r
∂

∂r

(vφ
r

)]
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10.2 Gradient

∇f =
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ (Cartesian)

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

∂f

∂z
ẑ (Cylindrical)

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂ (Spherical)

10.3 Divergence

∇ ·−→v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(Cartesian)

∇ ·−→v =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

(Cylindrical)

∇ ·−→v =
1

r2

∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(vθ sin θ) +

1

r sin θ

∂vφ
∂φ

(Spherical)

10.4 Curl

∇×−→v =

(
∂vz
∂y
− ∂vy

∂z

)
x̂+

(
∂vx
∂z
− ∂vz

∂x

)
ŷ +

(
∂vy
∂x
− ∂vx

∂y

)
ẑ (Cartesian)

∇×−→v =

(
1

r

∂vz
∂θ
− ∂vθ

∂z

)
r̂ +

(
∂vr
∂z
− ∂vz

∂r

)
θ̂ +

1

r

(
∂ (rvθ)

∂r
− ∂vr

∂θ

)
ẑ (Cylindrical)

∇×−→v =
1

r sin θ

(
∂ (vφ sin θ)

∂θ
− ∂vθ
∂φ

)
r̂ +

(
1

r sin θ

∂vr
∂φ
− 1

r

∂ (rvθ)

∂r

)
θ̂ +

1

r

(
∂ (rvθ)

∂r
− ∂vr

∂θ

)
φ̂ (Spherical)

10.5 Laplacian

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(Cartesian)

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
(Cylindrical)

∇2f =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
(Spherical)
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10.6 Continuity Equation

Note that at constant ρ, the above equations simply become ∇ ·−→v = 0
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10.7 Navier-Stokes Equation

10.8 Stream Functions and Velocity Potentials
10.8.1 Velocity Components

vx = −∂ψ
∂y

= −∂φ
∂x
, vy =

∂ψ

∂x
= −∂φ

∂y
(Cartesian)

vr = −1

r

∂ψ

∂θ
= −∂φ

∂r
, vθ =

∂ψ

∂r
= −1

r

∂φ

∂θ
(Cylindrical with vz = 0)

vr =
1

r

∂ψ

∂z
= −∂φ

∂r
, vz = −1

r

∂ψ

∂r
= −∂φ

∂z
(Cylindrical with vθ = 0)

vr = − 1

r2 sin θ

∂ψ

∂θ
= −∂φ

∂r
, vθ =

1

r sin θ

∂ψ

∂r
= −1

r

∂φ

∂θ
(Spherical)
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10.8.2 Differential Equations

1. Planar Flow

(a) For Cartesian with vz = 0 and no z-dependence:

∂

∂t

(
∇2ψ

)
+
∂ψ

∂y

∂
(
∇2ψ

)
∂x

− ∂ψ

∂x

∂
(
∇2ψ

)
∂y

= ν∇4ψ

∇2 ≡ ∂2

∂x2
+

∂2

∂y2

∇4ψ ≡
(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)
ψ

(b) For cylindrical coordinate with vz = 0 and no z-dependence:

∂

∂t

(
∇2ψ

)
+

1

r

[
∂ψ

∂r

∂
(
∇2ψ

)
∂θ

− ∂ψ

∂θ

∂
(
∇2ψ

)
∂r

]
= ν∇4ψ

∇2 ≡ ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

2. Axisymmetrical

(a) For cylindrical with vz = 0 and no z-dependence:

∂

∂t

(
E2ψ

)
− 1

r

[
∂ψ

∂r

∂
(
E2ψ

)
∂z

− ∂ψ

∂z

∂
(
E2ψ

)
∂r

]
− 2

r2

∂ψ

∂z
E2ψ = νE2

(
E2ψ

)
E2 ≡ ∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

(b) For spherical with vφ = 0 and no φ-dependence:

∂

∂t

(
E2ψ

)
+

1

r2 sin θ

[
∂ψ

∂r

∂
(
E2ψ

)
∂θ

− ∂ψ

∂θ

∂
(
E2ψ

)
∂r

]
− 2E2ψ

r2 sin2 θ

(
∂ψ

∂r
cos θ − 1

r

∂ψ

∂θ
sin θ

)
= νE2

(
E2ψ

)
E2 ≡ ∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
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