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1 Measured Thermodynamic Properties and Other Basic Concepts

1.1

1.2

1.3

Preliminary Concepts - The Language of Thermo

The system is the space of interest while the surroundings are everything else (together, system and surroundings
compose the universe)

— A system boundary separates the system and surroundings
An open system is defined as one that has both mass and energy flowing across a boundary
— The system boundary of an open system is called the control volume

An isolated system has neither mass nor energy flowing across a boundary

A closed system has no mass flowing across a boundary but energy can go through the boundary

Extensive properties depend on the size of the system while intensive properties do not

The state is the condition in which we find a system at any given time and is defined by its intensive properties
— A process brings the system from one state to another

Adiabatic processes have no heat transfer, isothermal processes have constant temperature, isobaric processes
have constant pressure, and isochoric processes have constant volume

State functions depend only on the state itself while path functions depend on the path taken

Measured Thermodynamic Properties

The intensive forms of volume, are as follows:

v
v=—
n
1%
’[/} = —_—— p_l
m
Pressure is defined as,
F
pP=-—
A
For pressure of an ideal gas,
p_ nRT  RT
TV

Equilibrium

Equilibrium is when a state has uniformity with temperature and pressure, does not change with time, does not
spontaneously leave equilibrium, and has no net driving force for change (cannot be for open systems)

— If the system is free from forced flows, it will eventually achieve equilibrium

— The Pjijg = Pyap and T};q = Thqp with more than one phase present with no tendency to change

If the system is stable, it will return to its original state when a small disturbance is imposed on it

If the state of an open system does not change with time as it undergoes a process, it is said to be at steady-state
(not at equilibrium due to net driving force)

— A steady-state may have temperature and pressure gradients; however, the state cannot change with time

Mechanical equilibrium occurs when there is a pressure balance



1.4

1.5

1.6

1.7

Independent and Dependent Thermodynamic Properties

The state postulate indicates that an intensive property of a pure substance can be determined from two independent
intensive properties (e.g. Temperature and Pressure)

For an extensive property, one more specification, specifically the size of the system, must be determined

To find the degrees of freedom, .#, the Gibbs phase rule can be used, where m is the number of components and 7 is
the number of phases:
F=m-m+2

The PvT Surface and its Projections for Pure Substances
The temperature at which a pure substance boils is also known as the saturation temperature

— At 1 atm, this is the normal boiling point

P ’p
The critical isotherm line has (g) =0 and <22> = 0 where it goes through an inflection point
v/r vt/

A gas is any form of matter that fills its container while a vapor is a gas that will condense to a liquid if isothermally
compressed

The saturation pressure occurs when the rate of vaporization equals the rate of condensation for one species whereas
the vapor pressure is the pressure of a single component in a vapor mixture

A subcooled liquid is the state where pressure and temperature are independent properties
A saturated liquid is when the liquid is “ready” to boil; any more energy input will lead to a bubble of vapor
A saturated vapor is the point at which any energy that is removed would cause a drop of liquid to condense

A superheated vapor exists at a higher temperature than the saturated vapor

Thermodynamic Property Tables

The reference state used for steam tables is as a liquid at the triple point of water where internal energy and entropy
are defined as zero

Lever Rule

The Lever Rule states the following where the subscripts of [ and v indicate the liquid and gas phases, respectively,

of a mixture:
n V=
Fraction of Vapor = Quality = z = V. !
n t+ny Uy —

As such,
v=av, + (1 —2z)y

2 The First Law of Thermodynamics

2.1

The First Law of Thermodynamics

The First Law states
AEuniv =0.. AESyS + AEsurr =0

The macroscopic kinetic energy is
1 7
EK = im 2



2.2

2.3

2.4

The macroscopic potential energy is
Ep =mgz

The physical definition of work is,

W:/?E.d?

w:f/PEdV

A change in temperature, change in phase, and/or chemical reaction can indicate a change in U for a given chemical
system

Therefore, work is given by

For an ideal gas, the internal energy depends only on its molecular kinetic energy component

— Thus, U is only a function of temperature for an ideal gas; however, for a real gas it needs a second intensive
property

Shaft work, Wy, is considered as everything that’s work besides PV-work

Reversible and Irreversible Processes

A process is reversible if the system can be returned to its original state without any net effect on the surroundings

The efficiency of expansion is given by
Wirre'u

flexp = 7
rev

The efficiency of compression is given by

Neomp = (ezp) ™" = o
comp EeTP Wirrev
The system pressure can only equal the external pressure if and only if the process is reversible (and thus w = —P [ dv

can be used when pressure is constant)

The First Law of Thermodynamics for Closed Systems

For a closed system,

AU =Q+W
On a differential basis,

dU = 6Q + 6W
Additionally,

% =Q+W

For an isolated system, AU = 0 when ignoring potential and kinetic energy changes

The First Law of Thermodynamics for Open Systems

A mole balance can be written as the following for a nonreacting system at steady-state,

§ Nin = E Nout
in

out
Flow work is the work the inlet fluid must do on the system to displace fluid within the system so that it can enter

— The rate of flow work is given by
(Wf'low> = nin (Pv)in



W= WS + Wflow = Zn’” (Pv)ln - Zh(mt (_Pv)out

out

o Enthalpy is defined as
h=u+ Pv

e The open system has the following balance

4

a (U+EK—|—EP) :ann [h+eK+€P}i7,,_Zhout [h+6K+6p]out+Q+Ws

in out

o For steady-state, the left hand-side of the equation is zero

e Neglecting ex and ep for the inlet and outlet since the changes are small compared to internal energy

2.5 Thermochemical Data for U and H

e Heat capacity at constant volume is defined as,

o Heat capacity at constant pressure is defined as,

o Additionally, at constant pressure for a single phase,
T>

Ah: CPdeqP
Th

e For solids and liquids,
Cp R Cy

e For ideal gases,
cp—¢Cy, =R

e Using the stoichiometric coefficient of v;, standard? enthalpy of reaction is
AR, =Y vi (ARF),

e Note that air consists of 79 mol% N2 and 21 mol% O2

o Adiabatic flame temperature (7T}4) is the maximum temperature a reactor can reach for the combustion of a given fuel
at constant pressure

— Therefore, AH = Q = 0; however, to calculate enthalpy changes, one can use this equivalent pathway:

Tad

0=AH,, +> n / cpi(T)dT

298.15K

IThe integrand limits must have absolute temperature units
20 = 298K and lbar



2.6

2.7

x The heat of reaction for a pure substance at 25° is defined as 0

The heat of reaction at any temperature is,

T
Ahyan(T) = ARS, + / > viepi(T) | dT
2

98.15K products

For other processes, including reversible isothermic processes and adiabatic expansions, see Subsection 2.8

Open-System Steady State Energy Balance on Process Equipment

Cross-sectional area and velocity are related by,

AV = AV

Nozzles and diffusers rely on a change in the cross-sectional area to decrease the bulk flow velocity; therefore, the input
stream’s velocity (kinetic energy) is important to consider but the potential energy for both streams can be removed.
Also, Wg and @ is typically zero. As such, since An = 0 at steady state,

(h + eK)in = (h + eK)out

Turbines and pumps (compressors) utilize shaft work. Turbines have work put out, and pumps have work put into the
system. @ is typically set to zero. As such,

W,
TSZAUL-FBK‘F@P)

A heat exchanger converts between Ah and Q. There is no shaft work, no change in kinetic or potential energy, so,

@ _ an
n

Throttling devices have no heat loss (@) due to the small amount of time in the device and have no shaft work. They
decrease the pressure of a stream to liquify a real gas. As such,

Ah =0

Thermodynamics and the Carnot Cycle

The steps of a Carnot cycle are as follows: Isothermal expansion, adiabatic expansion, isothermal compression, and
then adiabatic compression back to state one

Since this is a cycle, AU = 0 and therefore —W, et = Quet
The efficiency of a cycle is defined as,

net work Whet 1 Ic

" heat absorbed from hot reservoir Qn Ty

The coefficient of performance of a refrigeration cycle is,

Qc

P=
CO Wnet




2.8 Summary of Calculating First Law Quantities at Steady-Sate when Shaft-Work, Kinetic
Energy, and Potential Energy are Ignored for an Ideal Gas

o Always start with writing these three equations down:

LW =~—[PdV

2. AU=Q+W

3. AH = AU + A (PV)
4. dU = Cy dT

5. dH = Cp dT

o If it’s a perfect gas, write these three down as well:

1. Cp—Cy =nR
2. AH = ffcpdT

3. AU = [ Cy dT

2.8.1 Constant Pressure (Isobaric) Heating
1. P is constant, so W = —PAV

2. AH =Qp = [} CpdT

2.8.2 Constant Volume (Isochoric) Heating
1. W=0
T
2. AU = [ Cvdl = Qv
3. AH =AU + VAP

(a) Alternatively, AH = Qp = ;:2 CpdT

2.8.3 Adiabatic Flame Temperature (Isobaric/Adiabatic)

LAH=Q=0=AH},, + > n; 2T9(;f115K ¢p,i(T) dT

TN

2. For an alternate pathway, calculate Ah°

2.8.4 Reversible Isothermal Process in a Perfect Gas

1. AU=AH =0

RT
2. Rearrange the ideal-gas equation to solve for P = n

nRT In (iﬁ)

3.Q=-W

v
and substitute into the work equation to get W = —nRT In (VQ) =
1



2.8.5 Reversible Adiabatic Process in a Perfect Gas with Constant Heat Capacity
1. =0and AU =W
2. AU = [ Cy dT

@

AH = [} CpdT

4. The final state of the gas can be found by one of the following three methods?:
@ Zo (W)
L \Va

v (7) = ()"
(c) PV} = PV

k=L (k> 1)
cy
A. A process is called polytropic when v =k =1

1
5. To apply step 4 as one equation, we have, AU =W = 1 (PVo — P VY) =

2.8.6 Adiabatic Expansion of a Perfect Gas into a Vacuum

1. Q=W =AU =AH =0

2.8.7 Reversible Phase Change at Constant 7" and P

1. @ is the measured latent heat of the phase change
2. W=—-PAV

(a) AV can be calculated from the densities of the two phases

(b) If one phase is a gas, PV = nRT can be used

w

CAH=Q,
CAU=Q+W

>

3Note: PV = nRT can be used for initial state if need be

10



3 Entropy and the Second Law of Thermodynamics

3.1 Directionality of Processes/Spontaneity
o Irreversible processes are distinct and show directionality

o Reversible processes do not show directionality and represent the maximum work

3.2 Entropy - The Thermodynamic Property

Entropy is defined in terms of the heat absorbed during a hypothetical reversible process:

6 rev
ds = q

q2 5
AS :/ QTev
q1 T

Asuniv = ASsys + Assurr

Integrating yields,

e Also,

o It is safe to say that
Asuniv 2 0
3.3 Proofs of Entropic Reversibility and Irreversibility
3.3.1 Reversible Adiabatic Ideal Gas Expansion/Compression

e Since Grev = 0, Assys = ASgurr = ASyniy =0

3.3.2 Irreversible Adiabatic Ideal Gas Expansion

e A reversible pathway must be created to calculate the entropy change (see graph?)

o Since reversible processes represent ideal cases, |Wrey| > |Wirrev|s [AUren| > |Atirren|, and |ATvey| > |AT e

e For the reversible adiabatic portion, Asgys = 0. To calculate the irreversible value, the additional reversible isobaric
pathway (2 — 3) is hypothetically considered. As such, for 2 — 3: ¢.c, = Ah = f;’ ep(T)dT >0 .. Assys = Asypiy >0

4Property of Prof. Panzer

11



3.3.3 Irreversible Adiabatic Ideal Gas Compression

e A reversible pathway must be created to calculate the entropy change:

o Contrastingly to 3.2.2, |Wrey| < |Wirrevl, [AUren| < |AUjpres|, and |ATey| < |AT;rrer| since compression effectiveness
is based on minimizing that amount of work put into the system

e However, an analogous reversible isobaric pathway is created, so the result is the same as 3.2.2. Thus, ¢,., = Ah =
[2ep(T)dT > 0. Asgys = Asyniy > 0

3.3.4 Reversible Isothermal Ideal Gas Expansion/Compression

e Due to the definition of entropy, Asgys 7# 0. Also, Asgyrr = —Asgys since the surroundings absorb the gre,. As such,
Asuniv =0

3.3.5 Irreversible Isothermal Ideal Gas Expansion/Compression

P
1. For an ideal gas, T' = Ty = EU
0Gren Qrev
2. Asgys = =
s = =7 T

(a> Au = Qrev + Wrew

Vs
i. Since Au = 0 for isothermal processes, ¢rey = —Wrey = NRT In (%) = —nRTIn (—)
1

3. ASgyrr = _Grev _ Wrev (this will be opposite sign of As,s but smaller magnitude)
TS’U/’”I“ TS’MT”’

4. Asyniv = ASeys + Asgypr > 0

3.3.6 Reversible Carnot Engine

e For a Carnot cycle,

o For the surroundings,

o Additionally,



e As such,

o For the refrigerator,
Te

P T —Te

e For an irreversible Carnot engine, Asgyrr = ASyniv > 0

3.4 The Second Law of Thermodynamics for Open Systems

ds\ _ (S, (4S) L,
dt univ a dt sys dt surr B

e For an open system,

ds
— A - _ =
t steady-state, ( 7 ) 0

sYs
e At constant temperature and steady state,
Q

ASuniv = Assurr = § 7.7J0u1550utt - E hinsin - T
surr

out in
e When there is one stream with outlet and inlet molar flow rates being the same,
Q

surnr

nAs —

>0

3.5 Calculating Entropy for Closed Systems
3.5.1 Cyclic Process

e As = 0 since it is a state function

3.5.2 Reversible Adiabatic Process
e Since dgrey =0, As =0

e Note: Even for irreversible adiabatic processes, Asgyrr = 0 even though Asgys = Asyniv # 0

3.5.3 Reversible Isothermal Process

As = q;v (isothermal)

If it’s an ideal gas,
P.
As=—RlIn (Pz) (isothermal, perf. gas)
3.5.4 Reversible Isobaric Process

To T
As = / CPTQCZT (Const. P, no phase change)
T

3.5.5 Reversible Isochoric Process

e Since Av = 0, w = 0. Therefore, Au = ¢ and thus

T
As :/ cv(T) dT (Isochoric)



3.5.6 Reversible Phase Change at Constant 7" and P

qrev

T

e (rey is the latent heat of the transition in this case

e At constant temperature, As =

e Since P is constant, ¢,., = gp = Ah. Therefore,

Ah
As = T (rev. phase change at const. T'and P)

3.5.7 Change of State of a Perfect Gas - “The Catch-All”

Using cy for an ideal gas,

1> T
As = / L()dT + Rln (V2> (perf. gas)
rn T Wi

Using cp for an ideal gas,

T
[Py (P
As = /T1 T dT' — Rln <P1 (pertf. gas)

If cp is not temperature dependent,

As=cpln (%) — Rln (ij) =cpln (%) — Rln <“2%> (perf. gas, const. cp)

If ¢y is not temperature dependent,

T T: BT
As=cyln <Tf) + Rln <¥j) =cyln (Tf) + Rln (P;Tj) (perf. gas, const. cy )

3.5.8 Mixing of Different Inert Perfect Gases

The general equation can be written as the following for each substance i,

Vi
Y ()

For a perfect gas at constant temperature and external pressure (Pi is partial pressure of substance i),

ASmiz = —RZni In <J§DZ ) = —RZnZ— In (y;)
tot

3.5.9 Joule Expansion

AS # 0 for a Joule Expansion. Instead, the following is true,

P.
ASsys = ASuniv = nRIn Ve = -nRln (=2 (Joule Expansion)
7 P

3.5.10 Finding if an Isothermal Process is Reversible or Irreversible for an Ideal Gas

o Simply calculate the ASy,s as if it were a reversible isothermal process
e Then, calculate ASgy,r using Qeurr = —Q from AU =Q+W =0..Q =-W

e Sum the two entropy values to see if ASyni, is zero or not

14



3.6 Mechanical Explosions
o Since a mechanical explosion happens so quickly, the process is considered to be adiabatic with An = 0 so that AU = W
e The pressure after the explosion will reach one atmosphere
o The process is considered reversible only to find the maximum work and damage of the explosion (ASypniy = 0.". S1 = S2)

Example:

A Vi = 1m? tank containing superheated steam at 20 MPa and 1000°C bursts. Estimate the damage caused by the explosion.

1. From the steam tables, 8; = 7.4925 kJ/kg K, 41 = 4003.1 kJ/kg, and ©; = 0.0289666 m?>/kg

(a) Therefore, the mass is m = ﬁ = 34.52 kg
U1

2. Since §; = §9, use this to find @5 at 1 atm

(a) Since §3 = 7.4925k.J/kg K and 1 atm can only be found in the superheated water vapor table, this is the condition
of the water

i. Interpolate to yield: 4o = 2546 kJ/kg
3. Perform the energy balance to yield the answer

(a) AU =m (i — @) = —50.3 M.J

3.7 The Mechanical Energy Balance and Bernoulli Equation

W, _ (" o

= vdP+MW<—>+MW~g-Az

n P,

2 2

e The mechanical energy balance can only be used for reversible processes at steady state with one stream in or out. It
also only works for an isothermal or adiabatic process

The Bernoulli Equation is (no Wg; nozzle, diffuser):

P
0:/ vdP + Aex + Aep
Py

o For turbines or compressors/pumps (no Aeg, Aep):

144 P
=5 = / vdP
n P,
W -
e Recall that —= = Ah for adiabatic processes
n
o Efficiencies can be described as: .
actual Wg
bine = ——————
Mturbine reversible Wy
1 reversible W
Nlcompressor = Miyrbine — W
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3.8

Vapor-Compression Power and Refrigeration Cycles

3.8.1 The Rankine Cycle

The Rankine cycle consists of the following steps: turbine, condenser, compressor, boiler
The fluid enters the turbine (adiabatic and reversible) as superheated vapor where I/Vq = mAh and 81 = 89
— Only vapor is sent through to avoid blade erosion
The condenser brings the superheated vapor to the saturated liquid water state at constant pressure. Thus, Qc = mAh

The compressor (adiabatic and reversible) raises the pressure of the liquid via W, = iAh = i, AP (if 9; is constant)
and §3 = §4

— Only liquid is sent through since it’s difficult to pump a 2-phase mixture

TheAboiler then bringg the saturated liquid water back to the superheated vapor at constant pressure given by Q H=
mAh,where the final h is state 1

Additionally, the net work is, _ _
Wnet = |[Ws + Wel| = |qu + qol

The efficiency of the cycle is given by,

7 Rankine = |Wnet| _ |Ahturbine +Ahcomp|
e Q-H Ahboiler

Since the heat absorbed is proportional to the amount of fuel consumed,

Qrev :/TdS

For the Rankine Cycle, P, = Py > P, = P;

3.8.2 The Vapor-Compression Refrigeration Cycle

3.9

The refrigeration cycle is a backwards Rankine cycle: evaporator, compressor, condenser, expansion valve

The refrigerant should boil at a lower temperature than water at a pressure above ambient pressure (usually chloroflu-
orocarbons)

The heat transfer at T¢ for the evaporator is Q¢ = nAh
The refrigerant is then compressed to a high pressure where W, = nAh and s5 = s, if it’s reversible
The condenser then brings the refrigerant to the liquid phase via Qn = nAh

The high-pressure liquid is then irreversibly expanded in a valve back to state 1. This is a throttling process where
hy = hy
The COP for the cycle is, _

Qc  ha—hy

COP =+ =-———+
We  hs—hs

The Zeroth Law and Third Law

The Zeroth Law states that if two systems are each in thermal equilibrium with a third system, they are also in thermal
equilibrium with each other

— Temperature, an intensive property, is defined from this since it determines thermal equilibrium
The Third Law states that the entropy of a system approaches zero as the temperature approaches zero
— Another interpretation is that no finite sequence of cyclic processes can realistically succeed in cooling a body to

zero Kelvins
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3.10 Molecular View of Entropy
e From a statistical mechanics perspective,

Population in energy level E _BE
=e

Population in energy level 0

e The constant § is defined as
1

ﬂ:kBT

e There is an inverse exponential filling of higher energy states

e The molecular view of entropy is®,
s=klnW

4 Equations of State and Intermolecular Forces

4.1 Equations of State
4.1.1 Non-Ideality Improvements

e The Ideal Gas equation can be improved by using the dimensionless compressibility factor,

Pv =2zRT

Reduced properties (unitless) can account for intermolecular forces,

T,,. = — P,r, = —
T, P,

e The Principle of Corresponding States states that on the microscopic level, the dimensionless potential energy function is
the same for many species while the compressibility factor at T, and P, is the same for many species at the macroscopic
level

e The van der Waals equation of state is,

RT
P = - =
v—>b w2
e For the van der Waals equation of state,
27 (RT,)? b RT,
‘61 P, 8P,
4.1.2 Van der Waals-like Equations
o The Redlich-Kwong (RK) equation states,
p_ RT _ a
v—>b TY2y(v+b)
o 0.42748 R2T2> b 0.08664RT,
N P, N P,

¢ Even more accurate, the Peng-Robinson equation states,

RT aa(T)
v—=>b wv(v+b)+blv—0>)

P =

a= 0.45724¥ b= 0.07780];TC a(T) = {1 + K (1 . \/T)r

C c

k = 0.37464 + 1.54226w — 0.26992w>

5T is the number of microstates
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4.1.3 Virial Equations

o For pressures less than 15 bar,

_14BP_ v
=T RT T RT
B,RT.,
B:
P,

B, = B9 +wBW
B© =0.083 — 0.42277 % BW =0.139 — 0.1727,7*2

e The Generalized Compressibility (Lee-Kessler) equation is (use Tables C1/C2),

2z =20 4

4.1.4 Liquids and Solids

o For a saturated liquid, the Rackett Equation applies:

RT,
P

l,sat __

Y
(0.29056 — 0.087750) 1 H(1=7)*7]
o For general liquids and solids the thermal expansivity and compressibility constants are as follows, respectively:
1/ 0v 1 (0v
b=~ — Kk=— | =—
v \0T /) p v \OP ),

4.2 Determination of Parameters for Mixtures
e For a two-component mixture,
Amiz = Y1a1 + 2y1y2y/aras + y3as
bmiz = y1b1 + y2b2
5 Thermodynamic Web

5.1 Differential Quantities
5.1.1 Basic Thermodynamic Quantities

The total differential, dz, for z(x,y) is defined as:

9z (9y)\ (0z\ _
0z Y ox ) \Oy I_
H=U+PV A=U-TS G=H-TS

oUu OH
co=(5r), or=(a1),

Additionally, for a closed system in equilibrium,

as
T

The basic thermodynamic relationships are:

S

Cy=T ( ) (Closed, Eq.) Cp=T () (Closed, Eq.)
1% o) p
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5.1.2 The Gibbs Equations
du=TdS — Pdv

dh=TdS +vdP
da=—Pdv—-SdT

dg=vdP - SdT

ou ou
(35), =7 (ov), =7
oG oG
(57),= s = (55),="

Furthermore,

Procedure:

1. Write out the corresponding Gibbs Equation
2. Set the designated variable as constant

3. Solve for the desired relation

5.1.3 The Maxwell Relations

The Maxwell Relations can be derived by applying the basic Euler’s Reciprocity to the derivative forms of the equations of
state. The Euler Reciprocity is®,

d?z _ d?z
dedy  dzdy

PG (0 (0G\ _(0 N _ (v
oropr \oT' \oP),;), \oT ), \OT)p

) via the Euler Reciprocity
T

For instance,

This must equal

0°G (08
oPOT oP
Some relationships are shown below:

U (oTN _ _(op\ . OH (OT\ _ (OV
asov " \av ), \as), “"“asop \or),” \95),

OPA_ (SN _ (0PN 0°G  (0S\ __(oV
orov "\ov ), \oT ), orop "\or),  \oT ),

61t is important to note that the operator in the denominator of the derivative is performed right to left
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5.1.4 Dependence of State Functions on T, P, and V

1. Start with the Gibbs equation for dU, dH, dA, or dG
2. Impose the conditions of constant T', V', or P
3. Divide by dPr, dVp, dIvy, or dT'p

4. Use a Maxwell relation or heat-capacity equation to eliminate any terms with entropy change in the numerator

Here are a few examples:

5.2 Thermodynamic State Functions for Real Fluids

_ferm [ (v
AS—/TdT /<8T>Pdp

Co oP
As = TdT—i_/(a_T)vdv
oP
Au—/cvdT—l-/ [T (8—T)U—P] dv
Ah—/ dT+/ -T @ +wv| dP
N ar), "

e Hypothetical paths must be used. A key feature of these is hypothetically converting a real gas to an ideal one by

increasing the volume to v = oo or decreasing the pressure to P = 0. Then, the necessary changes can be imposed
followed by bringing the system to the real final state
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e Alternatively. a two-step path can be used that doesn’t utilize ideal gas properties,

rea 7 o 82P
Cy l = Cvd + L |:T (W)v] d?]
) Py 621)
real __ _id __ R
i [ [r(32) )
2, v 9*P 2 oP
_ id Z - il _
o= [ [ () oo [ 1 (G -]

5.3 Departure Functions
o The departure function is defined as (using enthalpy as an example), Ahglf’]’; =hrp— hé‘% I

— Departure functions are based on Lee-Kessler data

Tz
Ah = —Ah$P, + / CEdT + AhGPy,
Ty

de. de (0) de. (1)

AhT,.Z,)P,. _ AhTT,Z,)P,. hTfP,.
RT, RT, RT.
T2 id
_ de cp Py de
As = —AsTfPI + /T1 ?dT — RIn (P1> + AsT;’P2

de de (0) de (1)
Ast,'p, _ | As TP, Ast,p,

R R R

5.4 Joule-Thomson Expansions and Liquefaction

_ (9T
moT = P ,

¢ Liquefaction involves a reversible compressor (constant s), an isobaric cooler, and a JT-expansion valve (constant h),
and then a separator for the liquid and vapor streams

(o),

HjT = P 821)
i real
=i [ (5m) o

e For a J-T Expansion,

6 Phase Equilibria I

6.1 Pure Species Phase Equilibrium

o Combination of the first and second laws yields the following for a closed system,

0> (dGi)T,P
e The Clapeyron Equation states,

apP _ Ah

dr  TAv
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6.2

6.3

RT
Assuming that v; < v,, that v; ~ 0, and that v, = o we obtain the Clausius-Clapeyron Equation that states,

dPsat B PsatAhvap
dl  RT?

If Ahyqp is considered independent of temperature,

(P2 Ahyay (11
nl—|=—-——|(—-—
Pl R T2 T1

— This can be used to find effects of pressure on phase transitions since normal boiling points have a fixed P; and T

— The Clausius-Clapeyron Equation can be used even for solid temperatures and pressures to find heats of sublimation

* The equation works on phase boundaries with two data points for the same phase

This can be re-arranged to yield the experimental Antoine equation that states,

B
Inpset — 4 2
. C+T

Partial Molar Quantities

The arbitrary partial molar quantity, K, is defined as,

Therefore,

This should not be confused with the intensive k, which is,
K
k=—

ny = Zmiki

— Note: k; is the intensive property of a substance if it existed as a pure substance while K; is what it contributes
to the solution

— If K; — k; is zero, the species behave in the mixture to how they behave as pure substances
— Klzkl asxi—>1
— K’i:K'ioo as x; — 0

The Gibbs-Duhem Equation and Mixing Quantities

The Gibbs-Duhem Equation states the following for constant temperature and pressure,

— It means that the a substance’s partial molar properties cannot be independently changed (dependent on other
substance’s partial molar properties in the mixture)

Additionally,
Dkig =k =Y wiki =Y w; (Ki — k;)
AKpiz = K — ankz = Zm (Ki — k)
(ARmis), = K — ks
Positive deviations occur when the dissolution process is not energetically favorable such that Av,,;, > 0 and Ahy,;, < 0

Negative deviations occur when the dissolution process is energetically favorable (i-j interactions are stronger than i-i
or j-j) such that Avpie <0, Al <0, and Py < Pi"d

Enthalpy of solution is,



6.4 Analytical Determination of Partial Molar Properties

oK
6711‘

e Compute K; = ( ) by brute force
T,Pn;

6.5 Determination Partial Molar Properties for a Binary Mixture

e For a binary mixture, k = 21K + 29K, so:
_ dk
k=K +xo—
d.]?g

— Graphically, the first term is the intercept, and the derivative is the slope of the tangent line at x if data is plotted

as k vs. o

— This form allows you to construct a tangent curve at a specific constrained mole fraction using the point-slope
formula of (y — yo) = m (x — xp), and to extrapolate at © = 1 and « = 0 to find K5 and K7, respectively

* QGraphically, you can approximate K, as the y-intercept of a k vs. x5 plot and Ky as the y-intercept of a k

vs. x1 plot (or, more simply, the value of v at x5 = 1 on the tangent line for a k vs.

e The above method can be conveniently written in the following form:

dk
Ki=k—xy —
' " de Z1,T2
_ dk dk dk
ngkr—l—(l—:cg)d— =k+z1 — =k—21 —
L2 x1,T2 d.’Ez xT1,T2 del x1,T2

6.6 Mixing Quantities for Ideal Mixtures

o Entropy of mixing for a regular (ideal) solution,

Asfq‘im =—-R Z yi Iny;

o Mixing quantities of enthalpy and molar volume is,
ARl = Avid =0

mix mix

o Therefore,
Agid. = RT Z yilny;

7 Phase Equilibrium II: Fugacity

8@ - 3/% S - RT
(50), = (i )., = v () or

e From this, chemical potential can be expressed as the following for ideal gases,

7.1 The Fugacity

i — 1© = RTIn [;} = RTIn [pi}

— However, this expression breaks down when y; — 0 or P — 0
o Fugacity is defined as the following and is for real gases,

wi — u; = RT'In f‘flo‘| o f = fio exp (:uiRTNi >

K2

23
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— The reference state is some low pressure (typically 1 bar)

o For an ideal gas,

e The fugacity coefficient is defined as,

SR
=

s
|

B Di,sys N yipsys
— Fugacity is defined relative to the system’s partial pressure and not the partial pressure of the reference state

— If p < 1 attractive forces dominate, and if ¢ > 1 repulsive forces dominate

7.2 Fugacity of a Pure Gas
7.2.1 Mathematical Definition

o If we choose the reference state as a low enough pressure that the gas behaves ideally (e.g. 1 bar) such that fi" — P

and @7 — 1,
gi—g; = RTIn [fl]
low
o A
! Psys

7.2.2 Using Steam Tables

e From the tables in the back of the book, there are h, s, T, and P, which can be used to find ¢ in order to solve for f;

7.2.3 Equation of State

o Using an equation of state,

P fp
gi — g7 = / v;dP = RT In {Pl}

Piow low

— If the equation of state cannot be solved for v, then one can differentiate the equation of state with respect to P
at constant 7' to change the variable of integration from dP to dv and thus the integral bound from pressure to
molar volume

* The lower bound molar volume can be found from since it is ideal in this case

low

7.2.4 Generalized Correlations

e Similar to departure functions, we have,

log ; = log @EO) + wlog go(l)

— Since ; is dependent only on reduced quantities, one can use the Lee-Kessler tables to find ¢;

— Once you find ¢;, multiply it by the pressure the vapor is at to find f;

7.3 Fugacity of a Species in a Gas Mixture

7.3.1 Equation of State

wi — p; = RT'In

e To find V;, apply (c'?V

> to the equation of state
U T,P,nj;gi
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7.3.2 The Lewis Fugacity Rule
e The Lewis Fugacity rule is an approximation for the more rigorous ff = y;; P via the assumption that ¢} ~ ¢?
e From this rule comes the following approximations:
fL =yl P o f) = vifi

— Can be used when there is low pressure or high temperature, mostly ¢ in the mixture, or the chemical nature of
all species in the mixture are similar

— When using this method, T, and P, are for substance i (not pseudocritical) where the pressure used to find P, is
the partial pressure of ¢ such that P; = y; P

7.3.3 Ideal Gas Mixture Assumption

o Alternatively, one can assume an ideal gas mixture to simply have ¢; = 1 such that f;’ =y, P

7.4 Fugacity in the Liquid Phase
7.4.1 Activity Coefficient and Reference States

e When the mixing rules of a liquid mixture are the same for an ideal gas, the solution is said to be ideal

o Recall that an ideal solution follows Avid, = Ahi?, =0, Asid, = —R> y;Iny; and Agi?. = RT> y;Iny;

mix mix mix mixr

— Additionally, f»id = xsz d

(2

— There are equal intermolecular potentials between all species in solution

e When there is mostly ¢ in mixture, the Lewis-Randall State applies. However, when there is mostly j in solution,
Henry’s Law applies for substance i. Therefore,

fid=fo=fi (Lewis Rule: i-iinteractions)

fid=f? =H; (Henry’s Law: i-jinteractions)

— Therefore, i is a solute when applying Henry’s Law and a solvent when applying Lewis’ Rule

The activity coefficient is defined as,

fl_ i

N f;d xifzp

Vi

— The reference state for the liquid phase is when all intermolecular interactions are the same

o Additionally,

Henry _ i

K3 e’
Vi

Therefore,

Henry’s

fl=aivifi = v H;

The activity of species ¢ in liquid is given by,

o This leads to,
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7.4.2 Pure Species Fugacity

i

P l
sa sa U3
oo [ () o

e Poynting Correction: vll» is typically assumed to be constant

— The correction is about 1 for P < 100 bar
— If P#o4(T) is low then 3% =1 such that f! = Pt

K2

— If the liquid mixture is ideal then v; =1

o The Antoine Equation is used to find P!

7.4.3 Pressure and Temperature Dependence of Henry’s Constant

e The pressure dependence of Henry’s Constant is,
OlnH;\ V™
OP ), RT

Hi = HLP exp " Vi dP
) 1bar RT

o This integrates to,

— If the partial molar volume is not available, it can be approximated as the pure species molar volume

e The temperature dependence of Henry’s Constant is,

P

oT RT?

e The above can be rearranged to (M) =
o(1/T)) p

H>® — hY
R

7.4.4 Thermodynamic Relations Between ~;

e The Gibbs-Duhem Equation states that > z;dIn~; = 0. Therefore, for a binary mixture,

Jlnvy Olnvy\
SC1< 8$1 >+I2< 81‘1 )O

— As such, ; values are not independent of one another

7.4.5 Excess Quantities
o Excess Gibbs’ energy is defined as ¢¥ = g — ¢*¢

— Furthermore,
gE = Z x,éf = RTZ xiInv, = Agmiz — Agf,‘fm = AGmiz — RTZ z; Inx;
o Partial molar excess Gibbs’ energy is defined as

GF G; — G;d = RT In~;

e The thermodynamic consistency test states that

1
0= / In <%> dxq
0 V2
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7.4.6 Models for v; using ¢”

e The two conditions that must be satisfied by g¥ expressions are that ¢ = 0 at 2; = 1 and that it must obey the
Gibbs-Duhem Equation

e One symmetric model is the Two-Suffix Margules

e Other common models are asymmetric and can be found in Table 7.1

7.4.7 Expressing Molar Gibbs Energy of a Solution
o To find g¥, recall that Agi, =g — >, ;g; and Agid, = RT >, x;Inx;.
o Therefore,
g= ingi + RTin Inz; + g¥

e The plot below shows g where each number corresponds to one of the three terms of the equation above

S

9a

ideal
AGmix

Molar Gibbs energy

e Sometimes, the system can minimize its free energy by splitting into two phases

7.4.8 Temperature and Pressure Dependence of ¢g¥

39E> E
A =v = Avmim
(57),.

gE
0 (T) —hP Ahpis

or T2 T2

Pn;

8 Phase Equilibria I11: Phase Diagrams

8.1 Vapor-Liquid Equilibrium
e The following statement relates vapor and liquid nonideality, y; ¢ P = 27! f7

¢ Raoult’s Law is a simplification for ideal gases/solutions at low pressure and when intermolecular forces are approxi-
mately the same: y; P = x; f; — y; P = 2;Pf* where P = Y. ;P for a multiphase system

o For non-ideal liquids, a Lewis/Randall state can be used such that y,P = xi'yinat where P = Zl xi%PiS“t for a
multiphase system

— A helpful diagram for this is on Page 373
e Recall that the VLE requirement of ff = f;’ can be rewritten as,

t t r vl
sat psa ) dP
eerton( [ (45)

i

v P = mi’Yi
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8.2

Bubble Point and Dew Point

8.2.1 Ideal Liquid

If you're looking for the bubble point and pressure is known, one can find y; and Pf** from Raoult’s Law and 7' from
the Antoine Equation once P is found

If you're looking for the dew point and pressure is known, one can find z; and P from Raoult’s Law and T from the
Antoine Equation once P is found

If you're looking for the bubble point and temperature is known, one can find y; and P from Raoult’s Law once P7*
is obtained from the Antoine equation

If you're looking for the dew point and temperature is known, one can find x; and P from Raoult’s Law once P$? is
obtained from the Antoine equation

yi P
P_sat

K2

since the sum

What’s important to note here is that the second equation for dew point calculations will be 1 =)

of the liquid mole fractions is 1

8.2.2 Nonideal Liquid

8.3

8.4

8.5

See Page 378

Azeotropes

The azeotrope is where the P, and P, curves go through a maximum or minimum at z; # 0

At the azeotrope, z; = y;

sat

P,
Also, P = ~; P such that Ja _ Pl;at at the azeotrope
Yo a

One cannot purify past an azeotrope via simple distillation

— Instead, a temperature/pressure change or addition of a third component is needed

Solubility of Gases in Liquids

Applying Henry’s law to a fugacity equilibrium yields y;3; P = ;7 ™ “H

7

— If the gas is assumed to be ideal then y,P = x,H, and y, P = x, PF** where a is the gas and b is the liquid phase
* Therefore, P = x,Hq + zp PF*

Liquid-Liquid Equilibrium (LLE)
For LLE, ff = ff CLagyt = x? 72.6 with Lewis/Randall reference

Therefore, there are two sets of equations: #2872 = 222 and 2@+ = xbﬁvf where z§ + 2y = 1 and xj + m’g =1

: o d%g
For fluid stability, E) >0
T,P

%

A binodal curve is the curve found when the two sets of equations above are solved using a g% model for %J

The upper-consulate temperature is the value above which the liquid mixture no longer separates into two phases at
any composition

The lower-consulate temperature is the value below which phase separation is impossible at any composition
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8.6

8.7

9.1

A spinodal curve is the solution of where the fluid is unstable, which is reliant on the ¢ model chosen since this
influences the value of g

For a binodal and spinodal curve plot, see Page 398

For a z;v; vs. x, plot, see Page 401

Vapor-Liquid-Liquid Equilibrium (VLLE)
Here, f = f* = f” such that y; P = 20y* Pt = g0~ psat

7 (2 1 ?

— An ideal gas mixture occurs at P and P

Colligative Properties
Let 7 be the Van’t Hoff Factor, which is the amount of moles of ions a solute dissociates into in solution

— For instance, i = 2 for NaCl. If the substance is covalent (e.g. glucose), i =1

2
RTboil T

Boiling point elevation equation is T — Ty ~ bl
Ahyap

— This is based on the assumptions that the solute is dilute enough that the liquid can be treated as an ideal solution,
that In (1 — ) = —x3, and that Ah,q), is independent of temperature

RT?
Freezing point depression equation is Ti,ep — T = ﬁe”mbz
fus
xbRT - CbRT

The osmotic pressure is given by II = , where C}, has units of kg/m3

Va o MWb

Chemical Reaction Equilibrium

Equilibrium for a Single Reaction

At low temperatures the system is said to be under kinetic control while it is under thermodynamic control occurs at
higher temperatures when the activation energy is not an issue

Let moles be related to extent of reaction via ny = n; + ;¢

dG
At equilibrium — = > pv; =0

dg§
Ai Vi : o A °
Therefore, In ] (};) = 7ZRVTQZ = _ grjiﬂn
Ai Vi B : o A

— More simply, [] [é] = exp {ZR;;QZ} — exp {R?ZT’M} =K

. . K2 Ahvcz:rn 1 1 ) .
K is a function of temperature such that: In v = — 7 2 T where Ah2,.,. is assumed to be independent

1 2 1

of temperature
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9.2 Gas Phase Reactions (Single Reaction)

9.2.1 Equations

e Recall that for an ideal gas mixture f; = y; P where the nonideal Lewis Fugacity Rule produces fl = y;pi P

— Therefore, [] LJ:}‘| = <1£1r> [I(y)" =K

n; + vi§

e Also, y; = Y
n° 4+ v

9.2.2 Walkthrough
1. Calculate Ag;,,, from tabulated data
2. Calculate K° using Age,,, = —RT In(K°) and convert to K non-standard via the temperature dependent equation

3. Use the stoichiometry of the reaction to express mole numbers in terms of initial mole number and equilibrium extent
of reaction

4. Analyze reaction conditions

(a) This is simply the creation of an I.C.E. table

n
(b) If the reaction is at fixed temperature and pressure, use P; = y; P = — P
Ntot

i. A simplified equation under constant temperature and pressure for an ideal system is the following, where all
moles and mole fractions are amounts at equilibrium:

Ko - We)yp)? ( P ) _ (no)*(np)® < P P)

(yA)a(yB)b pe (nA)a(nB)b NTotal *
RT
(c) If the reaction is at fixed temperature and volume, use P; = i %

i. A simplified equation under constant temperature and volume for an ideal system is, where all moles are

amounts at equilibrium:
o (no)(np)! [ RT\"
PV

5. Substitute the P; values into the equilbrium-constant expression and solve for &,

6. Calculate the equilibrium mole numbers from &., and the expressions for n;
9.3 Liquid Phase Reaction (Single Reaction)

ﬁ Vi_ vivifi\"
'Hlff] -11( I ) =«

— When pressure is low, [] (g;ifyi)”i - K
— For an ideal solution, [] (z;)" = K

9.4 Multiple Reactions
e Here, there are two unknowns of &; and &3, two equations of K7 and K5 can be solved

R

nf + Zk:l Vi€
R

n° + Zk:l i€k

e The new Gibbs Phase Rule is that % = m — 7w+ 2 — R where R is the number of independent chemical reactions

° P =
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9.5

1.

Equilibrium Shifts

Increasing pressure at constant volume by adding inert gas will not change the equilibrium composition since partial
pressures are the same

. Adding an inert gas while holding temperature and pressure constant will shift the reaction to the side of greater moles

(a) This is analogous to decreasing pressure at constant temperature

Adding a reactant or product gas at constant temperature and volume will shift the equilibrium to the side opposite of
the addition since other partial pressures don’t change

Adding a reactant or product gas at constant temperature and pressure changes other partial pressures, so there is no
simple rule

(a) For example, if we have N2(g) + 3H2(g) = 2N H3(g), we can establish equilibrium at constant temperature and
pressure. Then, we can add some N2 at constant total pressure. The partial pressure of N2 will go up while the
other partial pressures go down. Under certain conditions, equilibrium will shift to the left to produce more of the
added gas even though this goes against intuition

Decreasing volume at constant temperature will be the same as increasing the pressure at constant temperature. It will
shift the reaction to the side of lower moles of gas

An increase in temperature at constant pressure will shift the equilibrium to the direction in which the system absorbs
heat from the surroundings via the van’t Hoff equation
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— The variable z is the number of moles of electrons transferred in balanced cell reaction (unitless) and F' = 96485—l
mo

o The major assumption is that the reaction is reversible
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